一种Massive MIMO单小区权值优化方法

本发明公开了一种Massive MIMO单小区权值优化方法,包括步骤:S1获取数据;S2确认待优化小区:根据运营商的KPI数据及业务需求确认待优化的小区;S3强化学习输出调整权值:结合小区的KPI数据的指标和用户的采样点位置分布,给出候选权值动作组合,选择波束权值方案对候选权值进行强化学习并调整,输出调整权值;S4现网执行:将步骤S3中选择的波束权值方案在现网中执行,并收集反馈后的数据;S5判断是否继续优化:根据收集的反馈数据,判断是否完成优化,若完成优化,则结束该小区的优化过程;若未完成,则返回步骤S3,并循环步骤S3~S5,直至完成优化,并将小区的Q-table保存。 The invent...

Full description

Saved in:
Bibliographic Details
Format Patent
LanguageChinese
Published 11.03.2022
Subjects
Online AccessGet full text

Cover

More Information
Summary:本发明公开了一种Massive MIMO单小区权值优化方法,包括步骤:S1获取数据;S2确认待优化小区:根据运营商的KPI数据及业务需求确认待优化的小区;S3强化学习输出调整权值:结合小区的KPI数据的指标和用户的采样点位置分布,给出候选权值动作组合,选择波束权值方案对候选权值进行强化学习并调整,输出调整权值;S4现网执行:将步骤S3中选择的波束权值方案在现网中执行,并收集反馈后的数据;S5判断是否继续优化:根据收集的反馈数据,判断是否完成优化,若完成优化,则结束该小区的优化过程;若未完成,则返回步骤S3,并循环步骤S3~S5,直至完成优化,并将小区的Q-table保存。 The invention discloses a Massive MIMO (Multiple Input Multiple Output) single cell weight optimization method. The method comprises the following steps: S1, acquiring data; S2, confirming a to-be-optimized cell: confirming the to-be-optimized cell according to KPI data of an operator and a service demand; S3, performing reinforcement learning and outputting an adjustment weight: giving a candidate weight action combination in combination with the indexes of the KPI data of the cell and the sampling point position distribution of the user, selecting a beam weight scheme to carry out reinforcement learning and adjustment on the candidate weight, and outputting the adjustment weight; S4, executing the current network: executin
Bibliography:Application Number: CN202110021063