基于注意力机制的Seq2seq泊位占有率预测方法
本发明公开的基于注意力机制的Seq2seq泊位占有率预测方法,包括接受请求、预处理数据、构建模型、优化模型等步骤,通过双向长短期记忆网络BiLSTM解决长期依赖学习能力不足的问题,通过卷积神经网络CNN捕获时间模式,获得学习序列与目标序列的相关性,以此增强模型局部特征的学习能力。本发明解决了现有技术中对泊位占有率预测结果不稳定、准确度低的问题。 The invention discloses an Seq2seq berth occupancy prediction method based on attention mechanism. The method comprises the st...
Saved in:
Format | Patent |
---|---|
Language | Chinese |
Published |
30.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Summary: | 本发明公开的基于注意力机制的Seq2seq泊位占有率预测方法,包括接受请求、预处理数据、构建模型、优化模型等步骤,通过双向长短期记忆网络BiLSTM解决长期依赖学习能力不足的问题,通过卷积神经网络CNN捕获时间模式,获得学习序列与目标序列的相关性,以此增强模型局部特征的学习能力。本发明解决了现有技术中对泊位占有率预测结果不稳定、准确度低的问题。
The invention discloses an Seq2seq berth occupancy prediction method based on attention mechanism. The method comprises the steps of receiving a request, preprocessing data, constructing a model, optimizing the model and the like, solves the problem of insufficient long-term dependence learning ability through a bidirectional long-short-term memory network BiLSTM, captures a time mode through a convolutional neural network CNN, and obtains the correlation between a learning sequence and a target sequence so as to enhance the learning ability of the local features of a model. According to the invention, the problems of unstable parking space occupancy prediction result and low accuracy in the prior art are solved. |
---|---|
Bibliography: | Application Number: CN202010603613 |