Workshop process industry key node recognition method and system based on complex network
The invention discloses a workshop flow industry key node recognition method and system based on a complex network. The method comprises the steps: building the complex network according to productionnodes of the workshop flow industry, carrying out the K-kernel decomposition of the complex network,...
Saved in:
Main Authors | , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
23.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a workshop flow industry key node recognition method and system based on a complex network. The method comprises the steps: building the complex network according to productionnodes of the workshop flow industry, carrying out the K-kernel decomposition of the complex network, and obtaining a KS value and KS center iteration times of the production nodes; obtaining the weight of each production node according to the KS value, the KS center iteration frequency and the entropy values of the degrees of the production nodes under all the production nodes; according to the weight and degree of each production node and the weight of the neighbor node, the production nodes are sorted according to importance, and the production node with the highest importance is the key node. For each production node in a flow industrial production line in a workshop, a complex network oriented to industrial big data is constructed, global attributes and local attributes of the production nodes are integrated, |
---|---|
AbstractList | The invention discloses a workshop flow industry key node recognition method and system based on a complex network. The method comprises the steps: building the complex network according to productionnodes of the workshop flow industry, carrying out the K-kernel decomposition of the complex network, and obtaining a KS value and KS center iteration times of the production nodes; obtaining the weight of each production node according to the KS value, the KS center iteration frequency and the entropy values of the degrees of the production nodes under all the production nodes; according to the weight and degree of each production node and the weight of the neighbor node, the production nodes are sorted according to importance, and the production node with the highest importance is the key node. For each production node in a flow industrial production line in a workshop, a complex network oriented to industrial big data is constructed, global attributes and local attributes of the production nodes are integrated, |
Author | HU DAPENG JIANG XUESONG MENG CHAO ZHU QINGCUN WEI XIUMEI |
Author_xml | – fullname: ZHU QINGCUN – fullname: MENG CHAO – fullname: WEI XIUMEI – fullname: JIANG XUESONG – fullname: HU DAPENG |
BookMark | eNqNjDsOwjAQBV1Awe8OywEorFBAiSIQFRUSokLGfpAoya7lNYLcnhQcgGqKGc3UjFgYE3O9SGq0kkgxiYcq1RxemlNPDXpiCaAEL0-ucy1MHXIlgRwH0l4zOro7RaBBeeliiw8x8nuYzs344VrF4seZWR725_K4QpQbNDqPobyVJ2vtxq6LYrsr_mm-jIU9IQ |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 基于复杂网络的车间流程工业关键节点识别方法及系统 |
ExternalDocumentID | CN111814339A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN111814339A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:24:13 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN111814339A3 |
Notes | Application Number: CN202010669695 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201023&DB=EPODOC&CC=CN&NR=111814339A |
ParticipantIDs | epo_espacenet_CN111814339A |
PublicationCentury | 2000 |
PublicationDate | 20201023 |
PublicationDateYYYYMMDD | 2020-10-23 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201023 day: 23 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | QILU UNIVERSITY OF TECHNOLOGY |
RelatedCompanies_xml | – name: QILU UNIVERSITY OF TECHNOLOGY |
Score | 3.4194639 |
Snippet | The invention discloses a workshop flow industry key node recognition method and system based on a complex network. The method comprises the steps: building... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
Title | Workshop process industry key node recognition method and system based on complex network |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201023&DB=EPODOC&locale=&CC=CN&NR=111814339A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzT6dD5QQTpW3Ft2rV9KOLSlSGsGzJlPo01adl8SIut-PHXm6T78EVf7yAkB7-7XPK7O4Abz0k7ccoM3TNdqls0pbqLY6ZTi9J2m9qOQWWh8CDq9J-sh4k9qcHrqhZG9Qn9UM0RBaKowHup_HW-ecQKFLeyuI0XQpTdhWM_0JbZsfzaNbEWdP3eaBgMiUaITyItevQNWWBpYezdb8G2uEY7Eg29566sSsl_h5TwEHZGYjVeHkHte96AfbKavNaAvcHyw7sBu4qhSQshXKKwOIYX-cJdzLMc5RXNHy2qARxfSEAS8YwlaE0MyjiqpkSjGWeoatyMZOxiSKgUozz5RLxig5_Addgbk74udjtdm2ZKos3BcBPqPOPJKSCWME8mIgZ2ZMsyK7YdSiURI3Y7NpsZZ9D6e53Wf8pzOJBmlt7bxBdQL9_ek0sRlsv4StnzB67nk1Q |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokTxqyZmb4uMbow9LEY6CCoMYtDg08LaEfChW9yMH3-9bceHL_p6lzTtJb-7Xvu7O4Arx542wikzdKfepLpJp1Rv4pDp1KS0VqOWbVBZKNz3G90n835sjQvwuqyFUX1CP1RzRIEoKvCeKX-drB-xPMWtTK_DuRDFN52R62mL7Fh-7dax5rXc9nDgDYhGiEt8zX90DVlgaWLs3G7Aprhi2xIN7eeWrEpJfoeUzh5sDcVqPNuHwvesDCWynLxWhp3-4sO7DNuKoUlTIVygMD2AF_nCnc7iBCU5zR_N8wEcX0hAEvGYRWhFDIo5yqdEowlnKG_cjGTsYkioFKM8-kQ8Z4MfwmWnPSJdXew2WJkmIP76YLgCRR7z6AgQi5gjExED27JlmRlaNqWSiBE2GxabGMdQ_Xud6n_KCyh1R_1e0LvzH05gV5pcevI6PoVi9vYenYkQnYXnyrY_xOaWRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Workshop+process+industry+key+node+recognition+method+and+system+based+on+complex+network&rft.inventor=ZHU+QINGCUN&rft.inventor=MENG+CHAO&rft.inventor=WEI+XIUMEI&rft.inventor=JIANG+XUESONG&rft.inventor=HU+DAPENG&rft.date=2020-10-23&rft.externalDBID=A&rft.externalDocID=CN111814339A |