Excavator detection method for unmanned aerial vehicle routing inspection based on CenterNet
The invention relates to an excavator detection method for unmanned aerial vehicle inspection based on CenterNet. The excavator detection method comprises the following steps: S1, establishing a training data set; S2, carrying out training of the Center Net; S3, carrying out excavator detection. Acc...
Saved in:
Main Authors | , , , , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
02.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention relates to an excavator detection method for unmanned aerial vehicle inspection based on CenterNet. The excavator detection method comprises the following steps: S1, establishing a training data set; S2, carrying out training of the Center Net; S3, carrying out excavator detection. According to the method, a spatial attention mechanism is designed for a vehicle body and a bucket of the excavator, and corresponding marks are newly added on the format of a traditional target detection data set; a spatial attention mechanism is trained in combination with the annotation thermodynamic diagram to enable the spatial attention mechanism to be focused on the vehicle body and the bucket respectively, thereby realizing modeling of the importance of the spatial position in the input image; the visual characteristics of the excavator are fully utilized, the network is focused on the important area of the target, the influence of irrelevant backgrounds on the detection result is reduced, and then the detecti |
---|---|
AbstractList | The invention relates to an excavator detection method for unmanned aerial vehicle inspection based on CenterNet. The excavator detection method comprises the following steps: S1, establishing a training data set; S2, carrying out training of the Center Net; S3, carrying out excavator detection. According to the method, a spatial attention mechanism is designed for a vehicle body and a bucket of the excavator, and corresponding marks are newly added on the format of a traditional target detection data set; a spatial attention mechanism is trained in combination with the annotation thermodynamic diagram to enable the spatial attention mechanism to be focused on the vehicle body and the bucket respectively, thereby realizing modeling of the importance of the spatial position in the input image; the visual characteristics of the excavator are fully utilized, the network is focused on the important area of the target, the influence of irrelevant backgrounds on the detection result is reduced, and then the detecti |
Author | DING NAN CHEN JIMING QIAN WEIBIN QIAN JIREN WU YUN YANG QINMIN YU JIN ZHOU JUNLIANG FAN HAIDONG LI QINGYI TENG WEIMING |
Author_xml | – fullname: YANG QINMIN – fullname: FAN HAIDONG – fullname: ZHOU JUNLIANG – fullname: CHEN JIMING – fullname: YU JIN – fullname: TENG WEIMING – fullname: QIAN WEIBIN – fullname: LI QINGYI – fullname: DING NAN – fullname: WU YUN – fullname: QIAN JIREN |
BookMark | eNqNi7sKwkAQRbfQwtc_jB8gGANqKyFilcpSCOPmxiwks2F3Evx8U-QDrO7hcO7aLMQLVuaVfy2PrD5QBYVV54U6aOMrqic5SMciqIgRHLc0onG2BQU_qJMPOYn9_HpznLoJMogiFNCtWdbcRuzm3Zj9PX9mjwN6XyL2bCHQMiuSJLmk19PxfEv_aX4rjj3b |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 基于CenterNet的用于无人机巡检的挖掘机检测方法 |
ExternalDocumentID | CN111738206A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN111738206A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:49:47 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN111738206A3 |
Notes | Application Number: CN202010653600 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201002&DB=EPODOC&CC=CN&NR=111738206A |
ParticipantIDs | epo_espacenet_CN111738206A |
PublicationCentury | 2000 |
PublicationDate | 20201002 |
PublicationDateYYYYMMDD | 2020-10-02 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201002 day: 02 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | ZHEJIANG UNIVERSITY ZHEJIANG ENERGY NATURAL GAS OPERATION CO., LTD ZHEJIANG ENERGY GROUP CO., LTD |
RelatedCompanies_xml | – name: ZHEJIANG UNIVERSITY – name: ZHEJIANG ENERGY GROUP CO., LTD – name: ZHEJIANG ENERGY NATURAL GAS OPERATION CO., LTD |
Score | 3.4165845 |
Snippet | The invention relates to an excavator detection method for unmanned aerial vehicle inspection based on CenterNet. The excavator detection method comprises the... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
Title | Excavator detection method for unmanned aerial vehicle routing inspection based on CenterNet |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201002&DB=EPODOC&locale=&CC=CN&NR=111738206A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7m_PmmU9H5gwjSt-Js19Y9FHFpxxDWDZmyB2EkWWAT7EbXTfGv9y7bnC_6VlIakmsuly_57gvANf5jpTGs2goRkF0deI5NKt629KUnqkI6wqF851biN5-rjz2vV4C3VS6M0Qn9MOKI6FEK_T038_VkvYkVGW7l9EaOsGh83-iGkbVEx3S0W3GsqB7GnXbU5hbnIU-s5ClElw5c0ip_2IBNXEYH5A3xS52yUia_Q0pjH7Y6WFuaH0Dha1iCXb66ea0EO63lgXcJtg1DU02xcOmF00N4jT-VmBNaZgOdGy5VyhZXQTNcg7JZ-i5o-mTCDC8210MaHSwbz4jkzEbpIr8Sv6IgNmD4QLu8Okt0fgRXjbjLmzY2uP9jnT5P1n1zj6GYjlN9AswP1G1NKQQod4gYakJqT1YEAhaXNNz84BTKf9dT_u_lGeyRpQ2jzTmHYp7N9AVG5lxeGpN-A0u4ktk |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4g_sA3RY3ir5qYvS3iYJs8LEa2EVQYxKDhwWRpSxMwcRAYaPzrvSsgvujb0mVNe-v1-rXffQW4xH8sFYZVUyICMss92zJJxdsUjrB5mQuLW5Tv3Iyc-nP5oWt3M_C2zIXROqEfWhwRPUqiv6d6vh6tNrECza2cXIkBFg1vax0vMBbomI52i5YRVL2w3QpavuH7nh8Z0ZOHLu2WSKv8bg3WcYntkjeEL1XKShn9Dim1HdhoY21JuguZr34ecv7y5rU8bDUXB9552NQMTTnBwoUXTvbgNfyUfEZomfVUqrlUCZtfBc1wDcqmyTun6ZNxPbzYTPVpdLDxcEokZzZI5vmV-BUFsR7DB9rlVeNIpftwUQs7ft3EBsc_1on9aNW30gFkk2GiDoE5rryuSIkA5QYRQ4ULZYsiR8BSIg03xz2Cwt_1FP57eQ65eqfZiBv30eMxbJPVNbvNOoFsOp6qU4zSqTjT5v0GXDKVzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Excavator+detection+method+for+unmanned+aerial+vehicle+routing+inspection+based+on+CenterNet&rft.inventor=YANG+QINMIN&rft.inventor=FAN+HAIDONG&rft.inventor=ZHOU+JUNLIANG&rft.inventor=CHEN+JIMING&rft.inventor=YU+JIN&rft.inventor=TENG+WEIMING&rft.inventor=QIAN+WEIBIN&rft.inventor=LI+QINGYI&rft.inventor=DING+NAN&rft.inventor=WU+YUN&rft.inventor=QIAN+JIREN&rft.date=2020-10-02&rft.externalDBID=A&rft.externalDocID=CN111738206A |