Excavator detection method for unmanned aerial vehicle routing inspection based on CenterNet

The invention relates to an excavator detection method for unmanned aerial vehicle inspection based on CenterNet. The excavator detection method comprises the following steps: S1, establishing a training data set; S2, carrying out training of the Center Net; S3, carrying out excavator detection. Acc...

Full description

Saved in:
Bibliographic Details
Main Authors YANG QINMIN, FAN HAIDONG, ZHOU JUNLIANG, CHEN JIMING, YU JIN, TENG WEIMING, QIAN WEIBIN, LI QINGYI, DING NAN, WU YUN, QIAN JIREN
Format Patent
LanguageChinese
English
Published 02.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention relates to an excavator detection method for unmanned aerial vehicle inspection based on CenterNet. The excavator detection method comprises the following steps: S1, establishing a training data set; S2, carrying out training of the Center Net; S3, carrying out excavator detection. According to the method, a spatial attention mechanism is designed for a vehicle body and a bucket of the excavator, and corresponding marks are newly added on the format of a traditional target detection data set; a spatial attention mechanism is trained in combination with the annotation thermodynamic diagram to enable the spatial attention mechanism to be focused on the vehicle body and the bucket respectively, thereby realizing modeling of the importance of the spatial position in the input image; the visual characteristics of the excavator are fully utilized, the network is focused on the important area of the target, the influence of irrelevant backgrounds on the detection result is reduced, and then the detecti
AbstractList The invention relates to an excavator detection method for unmanned aerial vehicle inspection based on CenterNet. The excavator detection method comprises the following steps: S1, establishing a training data set; S2, carrying out training of the Center Net; S3, carrying out excavator detection. According to the method, a spatial attention mechanism is designed for a vehicle body and a bucket of the excavator, and corresponding marks are newly added on the format of a traditional target detection data set; a spatial attention mechanism is trained in combination with the annotation thermodynamic diagram to enable the spatial attention mechanism to be focused on the vehicle body and the bucket respectively, thereby realizing modeling of the importance of the spatial position in the input image; the visual characteristics of the excavator are fully utilized, the network is focused on the important area of the target, the influence of irrelevant backgrounds on the detection result is reduced, and then the detecti
Author DING NAN
CHEN JIMING
QIAN WEIBIN
QIAN JIREN
WU YUN
YANG QINMIN
YU JIN
ZHOU JUNLIANG
FAN HAIDONG
LI QINGYI
TENG WEIMING
Author_xml – fullname: YANG QINMIN
– fullname: FAN HAIDONG
– fullname: ZHOU JUNLIANG
– fullname: CHEN JIMING
– fullname: YU JIN
– fullname: TENG WEIMING
– fullname: QIAN WEIBIN
– fullname: LI QINGYI
– fullname: DING NAN
– fullname: WU YUN
– fullname: QIAN JIREN
BookMark eNqNi7sKwkAQRbfQwtc_jB8gGANqKyFilcpSCOPmxiwks2F3Evx8U-QDrO7hcO7aLMQLVuaVfy2PrD5QBYVV54U6aOMrqic5SMciqIgRHLc0onG2BQU_qJMPOYn9_HpznLoJMogiFNCtWdbcRuzm3Zj9PX9mjwN6XyL2bCHQMiuSJLmk19PxfEv_aX4rjj3b
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 基于CenterNet的用于无人机巡检的挖掘机检测方法
ExternalDocumentID CN111738206A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN111738206A3
IEDL.DBID EVB
IngestDate Fri Jul 19 14:49:47 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN111738206A3
Notes Application Number: CN202010653600
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201002&DB=EPODOC&CC=CN&NR=111738206A
ParticipantIDs epo_espacenet_CN111738206A
PublicationCentury 2000
PublicationDate 20201002
PublicationDateYYYYMMDD 2020-10-02
PublicationDate_xml – month: 10
  year: 2020
  text: 20201002
  day: 02
PublicationDecade 2020
PublicationYear 2020
RelatedCompanies ZHEJIANG UNIVERSITY
ZHEJIANG ENERGY NATURAL GAS OPERATION CO., LTD
ZHEJIANG ENERGY GROUP CO., LTD
RelatedCompanies_xml – name: ZHEJIANG UNIVERSITY
– name: ZHEJIANG ENERGY GROUP CO., LTD
– name: ZHEJIANG ENERGY NATURAL GAS OPERATION CO., LTD
Score 3.4165845
Snippet The invention relates to an excavator detection method for unmanned aerial vehicle inspection based on CenterNet. The excavator detection method comprises the...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
Title Excavator detection method for unmanned aerial vehicle routing inspection based on CenterNet
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201002&DB=EPODOC&locale=&CC=CN&NR=111738206A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7m_PmmU9H5gwjSt-Js19Y9FHFpxxDWDZmyB2EkWWAT7EbXTfGv9y7bnC_6VlIakmsuly_57gvANf5jpTGs2goRkF0deI5NKt629KUnqkI6wqF851biN5-rjz2vV4C3VS6M0Qn9MOKI6FEK_T038_VkvYkVGW7l9EaOsGh83-iGkbVEx3S0W3GsqB7GnXbU5hbnIU-s5ClElw5c0ip_2IBNXEYH5A3xS52yUia_Q0pjH7Y6WFuaH0Dha1iCXb66ea0EO63lgXcJtg1DU02xcOmF00N4jT-VmBNaZgOdGy5VyhZXQTNcg7JZ-i5o-mTCDC8210MaHSwbz4jkzEbpIr8Sv6IgNmD4QLu8Okt0fgRXjbjLmzY2uP9jnT5P1n1zj6GYjlN9AswP1G1NKQQod4gYakJqT1YEAhaXNNz84BTKf9dT_u_lGeyRpQ2jzTmHYp7N9AVG5lxeGpN-A0u4ktk
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4g_sA3RY3ir5qYvS3iYJs8LEa2EVQYxKDhwWRpSxMwcRAYaPzrvSsgvujb0mVNe-v1-rXffQW4xH8sFYZVUyICMss92zJJxdsUjrB5mQuLW5Tv3Iyc-nP5oWt3M_C2zIXROqEfWhwRPUqiv6d6vh6tNrECza2cXIkBFg1vax0vMBbomI52i5YRVL2w3QpavuH7nh8Z0ZOHLu2WSKv8bg3WcYntkjeEL1XKShn9Dim1HdhoY21JuguZr34ecv7y5rU8bDUXB9552NQMTTnBwoUXTvbgNfyUfEZomfVUqrlUCZtfBc1wDcqmyTun6ZNxPbzYTPVpdLDxcEokZzZI5vmV-BUFsR7DB9rlVeNIpftwUQs7ft3EBsc_1on9aNW30gFkk2GiDoE5rryuSIkA5QYRQ4ULZYsiR8BSIg03xz2Cwt_1FP57eQ65eqfZiBv30eMxbJPVNbvNOoFsOp6qU4zSqTjT5v0GXDKVzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Excavator+detection+method+for+unmanned+aerial+vehicle+routing+inspection+based+on+CenterNet&rft.inventor=YANG+QINMIN&rft.inventor=FAN+HAIDONG&rft.inventor=ZHOU+JUNLIANG&rft.inventor=CHEN+JIMING&rft.inventor=YU+JIN&rft.inventor=TENG+WEIMING&rft.inventor=QIAN+WEIBIN&rft.inventor=LI+QINGYI&rft.inventor=DING+NAN&rft.inventor=WU+YUN&rft.inventor=QIAN+JIREN&rft.date=2020-10-02&rft.externalDBID=A&rft.externalDocID=CN111738206A