Power system abnormal data identification method

The invention relates to a power system abnormal data identification method. The method comprises the steps of: training a neural network by taking the normal data of a power system as a training sample; inputting to-be-detected data into the trained neural network to obtain a residual error sequenc...

Full description

Saved in:
Bibliographic Details
Main Authors QIAO LIN, LIU SHUJI, HU NAN, WU HE, LI ZHAO, XU ZHIYUAN, XU LIBO, LIU BIQI, CHEN SHUO, LI LIGANG, QU RUITING, LYU XUMING, LU BIN, SONG CHUNHE, WANG ZHONGFENG, FU YATONG, SHEN LI, CUI SHIJIE, ZHOU QIAONI, RAN RAN
Format Patent
LanguageChinese
English
Published 07.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention relates to a power system abnormal data identification method. The method comprises the steps of: training a neural network by taking the normal data of a power system as a training sample; inputting to-be-detected data into the trained neural network to obtain a residual error sequence; clustering the residual training based on an affine propagation clustering algorithm; and performing abnormal data judgment according to the features of each category and intra-category distances. According to the method, neural network training is carried out by using a chaotic particle swarm algorithm, and data clustering is realized by using the affine propagation clustering algorithm, so that a calculation amount can be remarkably reduced. The method does not depend on sampling distribution, and effectively improves the accuracy of abnormal data identification of the power system. 本发明涉及一种电力系统异常数据辨识方法,包括将电力系统正常数据作为训练样本,训练神经网络;将待检测数据输入训练后的神经网络,获得残差序列;基于仿射传播聚类算法对残差训练进行聚类;根据各个类别的特征和类内距离进行异常数据判断。本发明利用混沌粒子群算法来进行神经
AbstractList The invention relates to a power system abnormal data identification method. The method comprises the steps of: training a neural network by taking the normal data of a power system as a training sample; inputting to-be-detected data into the trained neural network to obtain a residual error sequence; clustering the residual training based on an affine propagation clustering algorithm; and performing abnormal data judgment according to the features of each category and intra-category distances. According to the method, neural network training is carried out by using a chaotic particle swarm algorithm, and data clustering is realized by using the affine propagation clustering algorithm, so that a calculation amount can be remarkably reduced. The method does not depend on sampling distribution, and effectively improves the accuracy of abnormal data identification of the power system. 本发明涉及一种电力系统异常数据辨识方法,包括将电力系统正常数据作为训练样本,训练神经网络;将待检测数据输入训练后的神经网络,获得残差序列;基于仿射传播聚类算法对残差训练进行聚类;根据各个类别的特征和类内距离进行异常数据判断。本发明利用混沌粒子群算法来进行神经
Author WANG ZHONGFENG
LI ZHAO
LIU BIQI
QU RUITING
SHEN LI
QIAO LIN
CHEN SHUO
WU HE
LIU SHUJI
SONG CHUNHE
FU YATONG
CUI SHIJIE
HU NAN
LYU XUMING
LI LIGANG
XU ZHIYUAN
ZHOU QIAONI
RAN RAN
XU LIBO
LU BIN
Author_xml – fullname: QIAO LIN
– fullname: LIU SHUJI
– fullname: HU NAN
– fullname: WU HE
– fullname: LI ZHAO
– fullname: XU ZHIYUAN
– fullname: XU LIBO
– fullname: LIU BIQI
– fullname: CHEN SHUO
– fullname: LI LIGANG
– fullname: QU RUITING
– fullname: LYU XUMING
– fullname: LU BIN
– fullname: SONG CHUNHE
– fullname: WANG ZHONGFENG
– fullname: FU YATONG
– fullname: SHEN LI
– fullname: CUI SHIJIE
– fullname: ZHOU QIAONI
– fullname: RAN RAN
BookMark eNrjYmDJy89L5WQwCMgvTy1SKK4sLknNVUhMyssvyk3MUUhJLElUyExJzSvJTMtMTizJzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoaGxhZGFmZGjsbEqAEAeXEtWA
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种电力系统异常数据辨识方法
ExternalDocumentID CN111382862A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN111382862A3
IEDL.DBID EVB
IngestDate Fri Jul 19 14:50:45 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN111382862A3
Notes Application Number: CN201811609951
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200707&DB=EPODOC&CC=CN&NR=111382862A
ParticipantIDs epo_espacenet_CN111382862A
PublicationCentury 2000
PublicationDate 20200707
PublicationDateYYYYMMDD 2020-07-07
PublicationDate_xml – month: 07
  year: 2020
  text: 20200707
  day: 07
PublicationDecade 2020
PublicationYear 2020
RelatedCompanies SHENYANG INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES
INFORMATION AND COMMUNICATION BRANCH, STATE GRID LIAONING ELECTRIC POWER SUPPLY CO., LTD
RelatedCompanies_xml – name: INFORMATION AND COMMUNICATION BRANCH, STATE GRID LIAONING ELECTRIC POWER SUPPLY CO., LTD
– name: SHENYANG INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES
Score 3.4004347
Snippet The invention relates to a power system abnormal data identification method. The method comprises the steps of: training a neural network by taking the normal...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
Title Power system abnormal data identification method
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200707&DB=EPODOC&locale=&CC=CN&NR=111382862A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTZNNkgGVh26xqC1FSZGiSm6iSamiboGiUbArluaSVqSBWjvsK-fmUeoiVeEaQQTQxZsLwz4nNBy8OGIwByVDMzvJeDyugAxiOUCXltZrJ-UCRTKt3cLsXVRg_aOjcCn16i5ONm6Bvi7-DurOTvbOvup-QXZgm5UB-2YNnJkZmAFNqPNQbnBNcwJtCulALlKcRNkYAsAmpZXIsTAVJUhzMDpDLt5TZiBwxc64S3MwA5eoZlcDBSE5sJiEQaDANDVZgqQQ5gVEpPyQO3OHAXQYk-FzBTo8h-wJxQgF0SLMii6uYY4e-gCHREP93G8sx_CvcZiDCx5-XmpEgwKSUkpliaWwDa9RVKaCeg-wGRQhk1JTjZMA3alEs0lGaRwmyOFT1KagQsUeuB1qOYyDCwlRaWpssDatiRJDhxMADtbg3g
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTZNNkgGVh26xqC1FSZGiSm6iSamiboGiUbArluaSVqSBWjvsK-fmUeoiVeEaQQTQxZsLwz4nNBy8OGIwByVDMzvJeDyugAxiOUCXltZrJ-UCRTKt3cLsXVRg_aOjcCn16i5ONm6Bvi7-DurOTvbOvup-QXZgm5UB-2YNnJkZmAFNrHNQbnBNcwJtCulALlKcRNkYAsAmpZXIsTAVJUhzMDpDLt5TZiBwxc64S3MwA5eoZlcDBSE5sJiEQaDANDVZgqQQ5gVEpPyQO3OHAXQYk-FzBTo8h-wJxQgF0SLMii6uYY4e-gCHREP93G8sx_CvcZiDCx5-XmpEgwKSUkpliaWwDa9RVKaCeg-wGRQhk1JTjZMA3alEs0lGaRwmyOFT1KegdMjxNcn3sfTz1uagQsUkuA1qeYyDCwlRaWpssCatyRJDhxkAJEqhms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Power+system+abnormal+data+identification+method&rft.inventor=QIAO+LIN&rft.inventor=LIU+SHUJI&rft.inventor=HU+NAN&rft.inventor=WU+HE&rft.inventor=LI+ZHAO&rft.inventor=XU+ZHIYUAN&rft.inventor=XU+LIBO&rft.inventor=LIU+BIQI&rft.inventor=CHEN+SHUO&rft.inventor=LI+LIGANG&rft.inventor=QU+RUITING&rft.inventor=LYU+XUMING&rft.inventor=LU+BIN&rft.inventor=SONG+CHUNHE&rft.inventor=WANG+ZHONGFENG&rft.inventor=FU+YATONG&rft.inventor=SHEN+LI&rft.inventor=CUI+SHIJIE&rft.inventor=ZHOU+QIAONI&rft.inventor=RAN+RAN&rft.date=2020-07-07&rft.externalDBID=A&rft.externalDocID=CN111382862A