Power system abnormal data identification method
The invention relates to a power system abnormal data identification method. The method comprises the steps of: training a neural network by taking the normal data of a power system as a training sample; inputting to-be-detected data into the trained neural network to obtain a residual error sequenc...
Saved in:
Main Authors | , , , , , , , , , , , , , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
07.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention relates to a power system abnormal data identification method. The method comprises the steps of: training a neural network by taking the normal data of a power system as a training sample; inputting to-be-detected data into the trained neural network to obtain a residual error sequence; clustering the residual training based on an affine propagation clustering algorithm; and performing abnormal data judgment according to the features of each category and intra-category distances. According to the method, neural network training is carried out by using a chaotic particle swarm algorithm, and data clustering is realized by using the affine propagation clustering algorithm, so that a calculation amount can be remarkably reduced. The method does not depend on sampling distribution, and effectively improves the accuracy of abnormal data identification of the power system.
本发明涉及一种电力系统异常数据辨识方法,包括将电力系统正常数据作为训练样本,训练神经网络;将待检测数据输入训练后的神经网络,获得残差序列;基于仿射传播聚类算法对残差训练进行聚类;根据各个类别的特征和类内距离进行异常数据判断。本发明利用混沌粒子群算法来进行神经 |
---|---|
AbstractList | The invention relates to a power system abnormal data identification method. The method comprises the steps of: training a neural network by taking the normal data of a power system as a training sample; inputting to-be-detected data into the trained neural network to obtain a residual error sequence; clustering the residual training based on an affine propagation clustering algorithm; and performing abnormal data judgment according to the features of each category and intra-category distances. According to the method, neural network training is carried out by using a chaotic particle swarm algorithm, and data clustering is realized by using the affine propagation clustering algorithm, so that a calculation amount can be remarkably reduced. The method does not depend on sampling distribution, and effectively improves the accuracy of abnormal data identification of the power system.
本发明涉及一种电力系统异常数据辨识方法,包括将电力系统正常数据作为训练样本,训练神经网络;将待检测数据输入训练后的神经网络,获得残差序列;基于仿射传播聚类算法对残差训练进行聚类;根据各个类别的特征和类内距离进行异常数据判断。本发明利用混沌粒子群算法来进行神经 |
Author | WANG ZHONGFENG LI ZHAO LIU BIQI QU RUITING SHEN LI QIAO LIN CHEN SHUO WU HE LIU SHUJI SONG CHUNHE FU YATONG CUI SHIJIE HU NAN LYU XUMING LI LIGANG XU ZHIYUAN ZHOU QIAONI RAN RAN XU LIBO LU BIN |
Author_xml | – fullname: QIAO LIN – fullname: LIU SHUJI – fullname: HU NAN – fullname: WU HE – fullname: LI ZHAO – fullname: XU ZHIYUAN – fullname: XU LIBO – fullname: LIU BIQI – fullname: CHEN SHUO – fullname: LI LIGANG – fullname: QU RUITING – fullname: LYU XUMING – fullname: LU BIN – fullname: SONG CHUNHE – fullname: WANG ZHONGFENG – fullname: FU YATONG – fullname: SHEN LI – fullname: CUI SHIJIE – fullname: ZHOU QIAONI – fullname: RAN RAN |
BookMark | eNrjYmDJy89L5WQwCMgvTy1SKK4sLknNVUhMyssvyk3MUUhJLElUyExJzSvJTMtMTizJzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoaGxhZGFmZGjsbEqAEAeXEtWA |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种电力系统异常数据辨识方法 |
ExternalDocumentID | CN111382862A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN111382862A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:50:45 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN111382862A3 |
Notes | Application Number: CN201811609951 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200707&DB=EPODOC&CC=CN&NR=111382862A |
ParticipantIDs | epo_espacenet_CN111382862A |
PublicationCentury | 2000 |
PublicationDate | 20200707 |
PublicationDateYYYYMMDD | 2020-07-07 |
PublicationDate_xml | – month: 07 year: 2020 text: 20200707 day: 07 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | SHENYANG INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES INFORMATION AND COMMUNICATION BRANCH, STATE GRID LIAONING ELECTRIC POWER SUPPLY CO., LTD |
RelatedCompanies_xml | – name: INFORMATION AND COMMUNICATION BRANCH, STATE GRID LIAONING ELECTRIC POWER SUPPLY CO., LTD – name: SHENYANG INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES |
Score | 3.4004347 |
Snippet | The invention relates to a power system abnormal data identification method. The method comprises the steps of: training a neural network by taking the normal... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
Title | Power system abnormal data identification method |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200707&DB=EPODOC&locale=&CC=CN&NR=111382862A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTZNNkgGVh26xqC1FSZGiSm6iSamiboGiUbArluaSVqSBWjvsK-fmUeoiVeEaQQTQxZsLwz4nNBy8OGIwByVDMzvJeDyugAxiOUCXltZrJ-UCRTKt3cLsXVRg_aOjcCn16i5ONm6Bvi7-DurOTvbOvup-QXZgm5UB-2YNnJkZmAFNqPNQbnBNcwJtCulALlKcRNkYAsAmpZXIsTAVJUhzMDpDLt5TZiBwxc64S3MwA5eoZlcDBSE5sJiEQaDANDVZgqQQ5gVEpPyQO3OHAXQYk-FzBTo8h-wJxQgF0SLMii6uYY4e-gCHREP93G8sx_CvcZiDCx5-XmpEgwKSUkpliaWwDa9RVKaCeg-wGRQhk1JTjZMA3alEs0lGaRwmyOFT1KagQsUeuB1qOYyDCwlRaWpssDatiRJDhxMADtbg3g |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTZNNkgGVh26xqC1FSZGiSm6iSamiboGiUbArluaSVqSBWjvsK-fmUeoiVeEaQQTQxZsLwz4nNBy8OGIwByVDMzvJeDyugAxiOUCXltZrJ-UCRTKt3cLsXVRg_aOjcCn16i5ONm6Bvi7-DurOTvbOvup-QXZgm5UB-2YNnJkZmAFNrHNQbnBNcwJtCulALlKcRNkYAsAmpZXIsTAVJUhzMDpDLt5TZiBwxc64S3MwA5eoZlcDBSE5sJiEQaDANDVZgqQQ5gVEpPyQO3OHAXQYk-FzBTo8h-wJxQgF0SLMii6uYY4e-gCHREP93G8sx_CvcZiDCx5-XmpEgwKSUkpliaWwDa9RVKaCeg-wGRQhk1JTjZMA3alEs0lGaRwmyOFT1KegdMjxNcn3sfTz1uagQsUkuA1qeYyDCwlRaWpssCatyRJDhxkAJEqhms |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Power+system+abnormal+data+identification+method&rft.inventor=QIAO+LIN&rft.inventor=LIU+SHUJI&rft.inventor=HU+NAN&rft.inventor=WU+HE&rft.inventor=LI+ZHAO&rft.inventor=XU+ZHIYUAN&rft.inventor=XU+LIBO&rft.inventor=LIU+BIQI&rft.inventor=CHEN+SHUO&rft.inventor=LI+LIGANG&rft.inventor=QU+RUITING&rft.inventor=LYU+XUMING&rft.inventor=LU+BIN&rft.inventor=SONG+CHUNHE&rft.inventor=WANG+ZHONGFENG&rft.inventor=FU+YATONG&rft.inventor=SHEN+LI&rft.inventor=CUI+SHIJIE&rft.inventor=ZHOU+QIAONI&rft.inventor=RAN+RAN&rft.date=2020-07-07&rft.externalDBID=A&rft.externalDocID=CN111382862A |