Wind power plant economic dispatching method based on artificial neural network

The invention relates to a wind power plant economic dispatching method based on an artificial neural network. The method comprises the following steps: predicting wind power, load and electricity price based on an artificial neural network method; predicting wind power, load and electricity price u...

Full description

Saved in:
Bibliographic Details
Main Authors WANG GUOPING, LU XUEGANG, CAI BAORUI, SUN HUALI, DONG SHITAO
Format Patent
LanguageChinese
English
Published 19.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention relates to a wind power plant economic dispatching method based on an artificial neural network. The method comprises the following steps: predicting wind power, load and electricity price based on an artificial neural network method; predicting wind power, load and electricity price uncertainty intervals; and designing an energy storage strategy. A two-stage combined energy storagescheduling strategy is designed for day-ahead and real-time market operation mechanisms of a typical power market, and the effect of improving economic benefits of wind power generation is achieved. 本发明涉及一种基于人工神经网络的风电场经济调度方法,包括如下步骤:基于人工神经网络方法进行风功率、负荷及电价预测;预测风功率、负荷及电价不确定性区间;设计储能策略。本发明针对典型电力市场的日前、实时市场运营机制,设计两级联合储能调度策略,具有提高风力发电经济效益的效果。
AbstractList The invention relates to a wind power plant economic dispatching method based on an artificial neural network. The method comprises the following steps: predicting wind power, load and electricity price based on an artificial neural network method; predicting wind power, load and electricity price uncertainty intervals; and designing an energy storage strategy. A two-stage combined energy storagescheduling strategy is designed for day-ahead and real-time market operation mechanisms of a typical power market, and the effect of improving economic benefits of wind power generation is achieved. 本发明涉及一种基于人工神经网络的风电场经济调度方法,包括如下步骤:基于人工神经网络方法进行风功率、负荷及电价预测;预测风功率、负荷及电价不确定性区间;设计储能策略。本发明针对典型电力市场的日前、实时市场运营机制,设计两级联合储能调度策略,具有提高风力发电经济效益的效果。
Author WANG GUOPING
DONG SHITAO
CAI BAORUI
LU XUEGANG
SUN HUALI
Author_xml – fullname: WANG GUOPING
– fullname: LU XUEGANG
– fullname: CAI BAORUI
– fullname: SUN HUALI
– fullname: DONG SHITAO
BookMark eNqNjEsKwjAQQLPQhb87jAdwUUToVoriSjeCyzIm03YwnQlJpNc3iAfwbd7m8ZZmJiq0MLcHi4OgE0UIHiUDWRUd2YLjFDDbgaWHkfKgDp6YyIEKYMzcsWX0IPSOX-VJ42tt5h36RJufV2Z7Pt2by46CtlSGlkrZNteqUFfVoT7u_2k-oSY46Q
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
DocumentTitleAlternate 一种基于人工神经网络的风电场经济调度方法
ExternalDocumentID CN111181158A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN111181158A3
IEDL.DBID EVB
IngestDate Fri Jul 19 15:48:10 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN111181158A3
Notes Application Number: CN202010066445
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200519&DB=EPODOC&CC=CN&NR=111181158A
ParticipantIDs epo_espacenet_CN111181158A
PublicationCentury 2000
PublicationDate 20200519
PublicationDateYYYYMMDD 2020-05-19
PublicationDate_xml – month: 05
  year: 2020
  text: 20200519
  day: 19
PublicationDecade 2020
PublicationYear 2020
RelatedCompanies YUNNAN POWER GRID CO., LTD
RelatedCompanies_xml – name: YUNNAN POWER GRID CO., LTD
Score 3.3923233
Snippet The invention relates to a wind power plant economic dispatching method based on an artificial neural network. The method comprises the following steps:...
SourceID epo
SourceType Open Access Repository
SubjectTerms CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
ELECTRICITY
GENERATION
SYSTEMS FOR STORING ELECTRIC ENERGY
Title Wind power plant economic dispatching method based on artificial neural network
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200519&DB=EPODOC&locale=&CC=CN&NR=111181158A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_mFPVNp6LzgwjStyJbP9Y-FHHpyhDWDpm6t9EmLZtIW1xF8K_3LuucL_qUkEBIjlzuLnf3O4Abw0g60rFjPbFiUzdFN9NRj3N1x7az2I1NKxWU7zwK7eGT-TC1pg14XefCKJzQTwWOiBwlkN8r9V6Xm08sX8VWLm-TBQ4Vd8HE87XaOu4qjUTz-95gHPkR1zj3eKiFjx69DA5qP879FmyjGt1TRttzn7JSyt8iJTiAnTGulleH0Piat2CPryuvtWB3VDu8sVvz3vIIohc0n1lJVc1Y-YYEYWmdVMzkAk9RqahItioJzUg6SVbkjK7GCiWCEXalalTk9zFcB4MJH-q4s9kPGWY83BzCOIFmXuTpKTA76yau6AknyQyT4OBI7AlXCkElvqU8g_bf67T_mzyHfSIp-co77gU0q_eP9BJFcJVcKdp9A-M0jQE
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_mFOebTkXnVwTpW5GtH7YPRVy6UnVth1TdW2nTFifSFlcR_Ou9ZJ3zRZ8SEgjJkcvd5e5-B3ChKEk_NfRYTrRYlVU2yGXU40zZ0PU8NmNVyxjPd_Z83X1U76batAWvy1wYgRP6KcARkaMY8nst3utq9Ylli9jK-WUyw6Hy2gktW2qs44HQSCR7aI0mgR1QiVKL-pL_YPGXwUDtx7hZg3VUsQ1hKj0NeVZK9VukONuwMcHVinoHWl8vXejQZeW1Lmx6jcMbuw3vzXcheEbzmVS8qhmp3pAgJGuSikk6w1PUIiqSLEpCEy6dUlIWhF-NBUoE4diVohGR33tw7oxC6sq4s-iHDBH1V4dQ9qFdlEV2AETPB4nJrpiR5IrK4eC42GNmyhgv8Z2mh9D7e53ef5Nn0HFDbxyNb_37I9ji5OV-8755DO36_SM7QXFcJ6eCjt-oQ4_x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Wind+power+plant+economic+dispatching+method+based+on+artificial+neural+network&rft.inventor=WANG+GUOPING&rft.inventor=LU+XUEGANG&rft.inventor=CAI+BAORUI&rft.inventor=SUN+HUALI&rft.inventor=DONG+SHITAO&rft.date=2020-05-19&rft.externalDBID=A&rft.externalDocID=CN111181158A