GRADIENT-BASED AUTO-TUNING FOR MACHINE LEARNING AND DEEP LEARNING MODELS

Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment, for each particular hyperparameter, and for each epoch, a computer processes the particular hyperparameter. An epoch explores one hyperparame...

Full description

Saved in:
Bibliographic Details
Main Authors IDICULA SAM, VARADARAJAN VENKATANATHAN, AGARWAL NIPUN, AGRAWAL SANDEEP
Format Patent
LanguageChinese
English
Published 12.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment, for each particular hyperparameter, and for each epoch, a computer processes the particular hyperparameter. An epoch explores one hyperparameter based on hyperparameter tuples. A respective score is calculated from each tuple. The tuple contains a distinct combination of values, each of which is contained in a value range of a distinct hyperparameter. All values of a tuple that belong to the particular hyperparameter are distinct. All values of a tuple that belong to other hyperparameters are held constant. The value range of the particular hyperparameter is narrowed based on an intersection point of a first line based on the scoresand a second line based on the scores. A machine learning algorithm is optimally configured from repeatedly narrowed value ranges of hyperparameters. The configured algorithm is invoked to obtain a result. 在本文中,水平可伸缩技术高效地配置机器
AbstractList Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment, for each particular hyperparameter, and for each epoch, a computer processes the particular hyperparameter. An epoch explores one hyperparameter based on hyperparameter tuples. A respective score is calculated from each tuple. The tuple contains a distinct combination of values, each of which is contained in a value range of a distinct hyperparameter. All values of a tuple that belong to the particular hyperparameter are distinct. All values of a tuple that belong to other hyperparameters are held constant. The value range of the particular hyperparameter is narrowed based on an intersection point of a first line based on the scoresand a second line based on the scores. A machine learning algorithm is optimally configured from repeatedly narrowed value ranges of hyperparameters. The configured algorithm is invoked to obtain a result. 在本文中,水平可伸缩技术高效地配置机器
Author IDICULA SAM
AGRAWAL SANDEEP
AGARWAL NIPUN
VARADARAJAN VENKATANATHAN
Author_xml – fullname: IDICULA SAM
– fullname: VARADARAJAN VENKATANATHAN
– fullname: AGARWAL NIPUN
– fullname: AGRAWAL SANDEEP
BookMark eNrjYmDJy89L5WTwcA9ydPF09QvRdXIMdnVRcAwN8dcNCfXz9HNXcPMPUvB1dPbw9HNV8HF1DAILOvq5KLi4ugYgRHz9XVx9gnkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyznyEQmFgaGpo7GhOjBgD4tC4n
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 机器学习和深度学习模型的基于梯度的自动调整
ExternalDocumentID CN111149117A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN111149117A3
IEDL.DBID EVB
IngestDate Fri Jul 19 13:09:53 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN111149117A3
Notes Application Number: CN201880062156
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200512&DB=EPODOC&CC=CN&NR=111149117A
ParticipantIDs epo_espacenet_CN111149117A
PublicationCentury 2000
PublicationDate 20200512
PublicationDateYYYYMMDD 2020-05-12
PublicationDate_xml – month: 05
  year: 2020
  text: 20200512
  day: 12
PublicationDecade 2020
PublicationYear 2020
RelatedCompanies ORACLE INT CORP
RelatedCompanies_xml – name: ORACLE INT CORP
Score 3.39149
Snippet Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment,...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title GRADIENT-BASED AUTO-TUNING FOR MACHINE LEARNING AND DEEP LEARNING MODELS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200512&DB=EPODOC&locale=&CC=CN&NR=111149117A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_M-XnTqej8oIL0VrRZa9yhSJekq7KmY6uy27AlQz10w1UE_3pfwua86PUFQvLI733k5f0CcEknpMgJbTv-xFeORwlCCqMGh6jbwtN1N2pIfRJ5Ez96DyN_VIO3ZS-M4Qn9NOSIiKgC8V4Zez1bXWJx87ZyfpW_omh6F2UBtxfZsb4icYnNO4HopzxlNmMBk7YcBNoyeAhsGq7BOobRVKNBPHV0V8rst0uJdmGjj7OV1R7Uvl4asM2WP681YCtZFLwbsGleaBZzFC5QON-HuDsIMYyTmdMJh4JbeMZSJ8NMTnYtTOqsJGTxvRRWT4QDIwwlt7gQ_ZUkSbnoDQ_gIhIZix1c3PhHE2MmV_toHUK9nJbqCCzNidbGUInkmFx5up_AvVYuzfUnRC2lno-h-fc8zf8GT2BHa1WXy11yCvXq_UOdoReu8nOjvm_UzIIg
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH9B_MCbokbxayZmt0VXhpXDYkZbGLp1BKbhRtxSoh6AyIyJf72vDYgXvb4mTfvS3_vo6_sV4JKOSZ4R2nQa44ZyPEoQUhg1OETd5p6uu1FD6hPLm_DRux82hiV4W_bCGJ7QT0OOiIjKEe-Fsdez1SUWN28r51fZK4qmd-3U5_YiO9ZXJC6xecsXvYQnzGbMZ9KWfV9bBg-BTYM1WMcQm2o0iKeW7kqZ_XYp7R3Y6OFsk2IXSl8vVaiw5c9rVdiKFwXvKmyaF5r5HIULFM73IOz0AwzjZOq0goHgFp6xxEkxk5MdC5M6Kw5Y2JXCikTQN8JAcosL0VtJ4oSLaLAPF22RstDBxY1-NDFicrWP-gGUJ9OJOgRLc6I1MVQiGSZXnu4ncK-VSzP9CVFdqecjqP09T-2_wXOohGkcjaKufDiGba1hXTp3yQmUi_cPdYoeucjOjCq_ARuqhRM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=GRADIENT-BASED+AUTO-TUNING+FOR+MACHINE+LEARNING+AND+DEEP+LEARNING+MODELS&rft.inventor=IDICULA+SAM&rft.inventor=VARADARAJAN+VENKATANATHAN&rft.inventor=AGARWAL+NIPUN&rft.inventor=AGRAWAL+SANDEEP&rft.date=2020-05-12&rft.externalDBID=A&rft.externalDocID=CN111149117A