GRADIENT-BASED AUTO-TUNING FOR MACHINE LEARNING AND DEEP LEARNING MODELS
Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment, for each particular hyperparameter, and for each epoch, a computer processes the particular hyperparameter. An epoch explores one hyperparame...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
12.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment, for each particular hyperparameter, and for each epoch, a computer processes the particular hyperparameter. An epoch explores one hyperparameter based on hyperparameter tuples. A respective score is calculated from each tuple. The tuple contains a distinct combination of values, each of which is contained in a value range of a distinct hyperparameter. All values of a tuple that belong to the particular hyperparameter are distinct. All values of a tuple that belong to other hyperparameters are held constant. The value range of the particular hyperparameter is narrowed based on an intersection point of a first line based on the scoresand a second line based on the scores. A machine learning algorithm is optimally configured from repeatedly narrowed value ranges of hyperparameters. The configured algorithm is invoked to obtain a result.
在本文中,水平可伸缩技术高效地配置机器 |
---|---|
AbstractList | Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment, for each particular hyperparameter, and for each epoch, a computer processes the particular hyperparameter. An epoch explores one hyperparameter based on hyperparameter tuples. A respective score is calculated from each tuple. The tuple contains a distinct combination of values, each of which is contained in a value range of a distinct hyperparameter. All values of a tuple that belong to the particular hyperparameter are distinct. All values of a tuple that belong to other hyperparameters are held constant. The value range of the particular hyperparameter is narrowed based on an intersection point of a first line based on the scoresand a second line based on the scores. A machine learning algorithm is optimally configured from repeatedly narrowed value ranges of hyperparameters. The configured algorithm is invoked to obtain a result.
在本文中,水平可伸缩技术高效地配置机器 |
Author | IDICULA SAM AGRAWAL SANDEEP AGARWAL NIPUN VARADARAJAN VENKATANATHAN |
Author_xml | – fullname: IDICULA SAM – fullname: VARADARAJAN VENKATANATHAN – fullname: AGARWAL NIPUN – fullname: AGRAWAL SANDEEP |
BookMark | eNrjYmDJy89L5WTwcA9ydPF09QvRdXIMdnVRcAwN8dcNCfXz9HNXcPMPUvB1dPbw9HNV8HF1DAILOvq5KLi4ugYgRHz9XVx9gnkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyznyEQmFgaGpo7GhOjBgD4tC4n |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 机器学习和深度学习模型的基于梯度的自动调整 |
ExternalDocumentID | CN111149117A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN111149117A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:09:53 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN111149117A3 |
Notes | Application Number: CN201880062156 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200512&DB=EPODOC&CC=CN&NR=111149117A |
ParticipantIDs | epo_espacenet_CN111149117A |
PublicationCentury | 2000 |
PublicationDate | 20200512 |
PublicationDateYYYYMMDD | 2020-05-12 |
PublicationDate_xml | – month: 05 year: 2020 text: 20200512 day: 12 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | ORACLE INT CORP |
RelatedCompanies_xml | – name: ORACLE INT CORP |
Score | 3.39149 |
Snippet | Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment,... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
Title | GRADIENT-BASED AUTO-TUNING FOR MACHINE LEARNING AND DEEP LEARNING MODELS |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200512&DB=EPODOC&locale=&CC=CN&NR=111149117A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_M-XnTqej8oIL0VrRZa9yhSJekq7KmY6uy27AlQz10w1UE_3pfwua86PUFQvLI733k5f0CcEknpMgJbTv-xFeORwlCCqMGh6jbwtN1N2pIfRJ5Ez96DyN_VIO3ZS-M4Qn9NOSIiKgC8V4Zez1bXWJx87ZyfpW_omh6F2UBtxfZsb4icYnNO4HopzxlNmMBk7YcBNoyeAhsGq7BOobRVKNBPHV0V8rst0uJdmGjj7OV1R7Uvl4asM2WP681YCtZFLwbsGleaBZzFC5QON-HuDsIMYyTmdMJh4JbeMZSJ8NMTnYtTOqsJGTxvRRWT4QDIwwlt7gQ_ZUkSbnoDQ_gIhIZix1c3PhHE2MmV_toHUK9nJbqCCzNidbGUInkmFx5up_AvVYuzfUnRC2lno-h-fc8zf8GT2BHa1WXy11yCvXq_UOdoReu8nOjvm_UzIIg |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH9B_MCbokbxayZmt0VXhpXDYkZbGLp1BKbhRtxSoh6AyIyJf72vDYgXvb4mTfvS3_vo6_sV4JKOSZ4R2nQa44ZyPEoQUhg1OETd5p6uu1FD6hPLm_DRux82hiV4W_bCGJ7QT0OOiIjKEe-Fsdez1SUWN28r51fZK4qmd-3U5_YiO9ZXJC6xecsXvYQnzGbMZ9KWfV9bBg-BTYM1WMcQm2o0iKeW7kqZ_XYp7R3Y6OFsk2IXSl8vVaiw5c9rVdiKFwXvKmyaF5r5HIULFM73IOz0AwzjZOq0goHgFp6xxEkxk5MdC5M6Kw5Y2JXCikTQN8JAcosL0VtJ4oSLaLAPF22RstDBxY1-NDFicrWP-gGUJ9OJOgRLc6I1MVQiGSZXnu4ncK-VSzP9CVFdqecjqP09T-2_wXOohGkcjaKufDiGba1hXTp3yQmUi_cPdYoeucjOjCq_ARuqhRM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=GRADIENT-BASED+AUTO-TUNING+FOR+MACHINE+LEARNING+AND+DEEP+LEARNING+MODELS&rft.inventor=IDICULA+SAM&rft.inventor=VARADARAJAN+VENKATANATHAN&rft.inventor=AGARWAL+NIPUN&rft.inventor=AGRAWAL+SANDEEP&rft.date=2020-05-12&rft.externalDBID=A&rft.externalDocID=CN111149117A |