Method for acquiring neural network training set and system thereof

The invention provides a method for acquiring a neural network training set and a system thereof. The method comprises the steps of: S100, acquiring category information of an image set to be filtered; S200, filtering a target image, and obtaining a target image data set corresponding to the image s...

Full description

Saved in:
Bibliographic Details
Main Author LUO PEIYUAN
Format Patent
LanguageChinese
English
Published 28.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention provides a method for acquiring a neural network training set and a system thereof. The method comprises the steps of: S100, acquiring category information of an image set to be filtered; S200, filtering a target image, and obtaining a target image data set corresponding to the image set to be filtered, wherein the similarity of the target image and the sample image reaches the imagedata of a preset similarity threshold, and the sample image is a template image corresponding to the category information of the image set to be filtered; and S300, performing a confrontation training on the target image data to obtain a sample data set. The invention is capable of reducing manual screening of sample data sets, improving screening efficiency and screening reliability, and improving the accuracy of the neural network. 本发明提供了种神经网络训练集的获取方法及其系统,其方法包括:S100获取待筛选图像集的类别信息;S200筛选目标图像,获得所述待筛选图像集对应的目标图像数据集;所述目标图像为与样本图像之间相似度达到预设相似度阈值的图像数据;所述样本图像为待筛选图像集的类别信息对应的模板图像;S300对所述目标图像数据进行对抗训练获得样本数据集。本发明实现减少人工筛选样本数据集,提升筛选
AbstractList The invention provides a method for acquiring a neural network training set and a system thereof. The method comprises the steps of: S100, acquiring category information of an image set to be filtered; S200, filtering a target image, and obtaining a target image data set corresponding to the image set to be filtered, wherein the similarity of the target image and the sample image reaches the imagedata of a preset similarity threshold, and the sample image is a template image corresponding to the category information of the image set to be filtered; and S300, performing a confrontation training on the target image data to obtain a sample data set. The invention is capable of reducing manual screening of sample data sets, improving screening efficiency and screening reliability, and improving the accuracy of the neural network. 本发明提供了种神经网络训练集的获取方法及其系统,其方法包括:S100获取待筛选图像集的类别信息;S200筛选目标图像,获得所述待筛选图像集对应的目标图像数据集;所述目标图像为与样本图像之间相似度达到预设相似度阈值的图像数据;所述样本图像为待筛选图像集的类别信息对应的模板图像;S300对所述目标图像数据进行对抗训练获得样本数据集。本发明实现减少人工筛选样本数据集,提升筛选
Author LUO PEIYUAN
Author_xml – fullname: LUO PEIYUAN
BookMark eNrjYmDJy89L5WRw9k0tychPUUjLL1JITC4szSzKzEtXyEstLUrMAVIl5flF2QolRYmZeSDx4tQShcS8FIXiyuKS1FyFkozUotT8NB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicCjQp3tnP0MDC1NLM2NjC0ZgYNQCzgDSH
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 种神经网络训练集的获取方法及其系统
ExternalDocumentID CN108596338A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN108596338A3
IEDL.DBID EVB
IngestDate Fri Jul 19 14:50:14 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN108596338A3
Notes Application Number: CN201810438759
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180928&DB=EPODOC&CC=CN&NR=108596338A
ParticipantIDs epo_espacenet_CN108596338A
PublicationCentury 2000
PublicationDate 20180928
PublicationDateYYYYMMDD 2018-09-28
PublicationDate_xml – month: 09
  year: 2018
  text: 20180928
  day: 28
PublicationDecade 2010
PublicationYear 2018
RelatedCompanies SICHUAN FEIXUN INFORMATION TECHNOLOGY CO., LTD
RelatedCompanies_xml – name: SICHUAN FEIXUN INFORMATION TECHNOLOGY CO., LTD
Score 3.2879648
Snippet The invention provides a method for acquiring a neural network training set and a system thereof. The method comprises the steps of: S100, acquiring category...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
Title Method for acquiring neural network training set and system thereof
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180928&DB=EPODOC&locale=&CC=CN&NR=108596338A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTquj8IIL0rTiXrI0PRVzaMoR2Q6bsbXRtyhRph60I_vVeYut80adAAiG55HKX5He_A7jspn2Wol9v0fgmtRhn0optm1t2N0kpZ3NGmQoUDiN7-Mjup_1pC16aWBjNE_qhyRFRoxLU90qf18vVI5ansZXl1fwZq4rbYOJ6Zn07VmRUPW56A9cfj7yRMIVwRWRGD64C2eNeo_xuDdbRjXaUNvhPAxWVsvxtUoJd2Bhjb3m1B63PhQHbosm8ZsBWWH94G7CpEZpJiZW1Fpb7IEKd9pmgv0niREF50f4QxUwZv2Khcd2kyf1ASlmROE_JN2czUQ6fLLIDuAj8iRhaOK7ZjxBmIlpNgR5COy9yeQQkwYMzu5YoV7wYUJnyjPJMGWVcHOk48TF0_u6n81_jCewogSpsRI-fQrt6e5dnaICr-bmW3BcdzYs4
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_JhvOhWdXxGkb8Vtydr4UMSlLVPXbsiUvY2uTVGRdtiK4F_vJW7OF30KJBCSSy53SX73O4DzZtJhCfr1Jo0uE5NxJs3IsrhpNeOEcjZllKlA4SC0eg_sdtwZV-BlEQujeUI_NDkialSM-l7q83q2fMRyNbayuJg-Y1V-5Y8c15jfjhUZVZsbbtfxhgN3IAwhHBEa4b2jQPa41yi_XoFVdLFtpQ3eY1dFpcx-mxR_C9aG2FtWbkPl86kONbHIvFaHjWD-4V2HdY3QjAusnGthsQMi0GmfCfqbJIoVlBftD1HMlNErFhrXTRa5H0ghSxJlCfnmbCbK4ZN5ugtnvjcSPRPHNfkRwkSEyynQPahmeSb3gcR4cKYtiXLFiwGVCU8pT5VRxsWRth0dQOPvfhr_NZ5CrTcK-pP-TXh3CJtKuAon0eZHUC3f3uUxGuNyeqKl-AXQt44r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Method+for+acquiring+neural+network+training+set+and+system+thereof&rft.inventor=LUO+PEIYUAN&rft.date=2018-09-28&rft.externalDBID=A&rft.externalDocID=CN108596338A