Recognition using re-recognition and statistical classification

Architecture that employs an overall grammar as a set of context-specific grammars for recognition of an input, each responsible for a specific context, such as subtask category, geographic region, etc. The grammars together cover the entire domain. Moreover, multiple recognitions can be run in para...

Full description

Saved in:
Bibliographic Details
Main Authors BUNTSCHUH, BRUCE, LEVIT, MICHAEL, CHANG, SHUANGYU
Format Patent
LanguageEnglish
Published 17.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Architecture that employs an overall grammar as a set of context-specific grammars for recognition of an input, each responsible for a specific context, such as subtask category, geographic region, etc. The grammars together cover the entire domain. Moreover, multiple recognitions can be run in parallel against the same input, where each recognition uses one or more of the context-specific grammars. The multiple intermediate recognition results from the different recognizer-grammars are reconciled by running re-recognition using a dynamically composed grammar based on the multiple recognition results and potentially other domain knowledge, or selecting the winner using a statistical classifier operating on classification features extracted from the multiple recognition results and other domain knowledge.
AbstractList Architecture that employs an overall grammar as a set of context-specific grammars for recognition of an input, each responsible for a specific context, such as subtask category, geographic region, etc. The grammars together cover the entire domain. Moreover, multiple recognitions can be run in parallel against the same input, where each recognition uses one or more of the context-specific grammars. The multiple intermediate recognition results from the different recognizer-grammars are reconciled by running re-recognition using a dynamically composed grammar based on the multiple recognition results and potentially other domain knowledge, or selecting the winner using a statistical classifier operating on classification features extracted from the multiple recognition results and other domain knowledge.
Author BUNTSCHUH, BRUCE
LEVIT, MICHAEL
CHANG, SHUANGYU
Author_xml – fullname: BUNTSCHUH, BRUCE
– fullname: LEVIT, MICHAEL
– fullname: CHANG, SHUANGYU
BookMark eNrjYmDJy89L5WSwD0pNzk_PyyzJzM9TKC3OzEtXKErVLUISTMxLUSguSSzJLC7JTE7MUUjOSSwuzkwDskHSPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7Uk3jHUyMDQwMjUzNzCwtHQmDhVAMhlNFI
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID AU2010256788A1
GroupedDBID EVB
ID FETCH-epo_espacenet_AU2010256788A13
IEDL.DBID EVB
IngestDate Fri Jul 19 14:32:04 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_AU2010256788A13
Notes Application Number: AU20100256788
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20111117&DB=EPODOC&CC=AU&NR=2010256788A1
ParticipantIDs epo_espacenet_AU2010256788A1
PublicationCentury 2000
PublicationDate 20111117
PublicationDateYYYYMMDD 2011-11-17
PublicationDate_xml – month: 11
  year: 2011
  text: 20111117
  day: 17
PublicationDecade 2010
PublicationYear 2011
RelatedCompanies MICROSOFT CORPORATION
RelatedCompanies_xml – name: MICROSOFT CORPORATION
Score 2.825174
Snippet Architecture that employs an overall grammar as a set of context-specific grammars for recognition of an input, each responsible for a specific context, such...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title Recognition using re-recognition and statistical classification
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20111117&DB=EPODOC&locale=&CC=AU&NR=2010256788A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba8IwFD6Iu75t3cYubhQ2-lZWbda0DyLaWmTgBdHhmzRNOgaSStuxv7-TYDefDHk6gZAEvpxLvnMC8CICRnmCAMwcQWzSTj0brYTA5izwmI_62clUcvJ44o2W5H31tmrAps6F0XVCf3RxRERUiniv9H29_Q9iRZpbWb6yLxTlvXjRjSxeh_uwUSsadIezaTQNrTBET9KazPWjL2p3dPj66CsdoSFNtdv2MVB5Kdt9pRJfwPEM55PVJTSENOAsrP9eM-B0vHvyNuBEczTTEoU7HJZX0JvXvJ9cmoq6_mkWwi72hInkpkoW0nWYk42ZKitZ0YL05q7hOR4uwpGNa1r_HcG6v9zfgHsDTZlLcQsmJ21OOxkJmOOryjA-czOXdwh1GUV4BnfQOjTT_eHhBzjXMVTVaQuaVfEtHlEJV-xJn90vDJqKeQ
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD6MeZlvWhUvUwtK34rbWnt5GGNrV6qu3Rid7K00TSvCaEdb8e97Elbt00KeTiAkgS_nku-cADwlJtFphABMe4kqq_1Yk9FKMGVKTI0YqJ97KUtO9nzNXalv65d1CzZ1LgyvE_rDiyMiomLEe8Xv6-1_EMvm3MrymXyhKB85wdCWaB3uw6ZL9mQ4XcztuSVZFnqSkr_kj76o3dHhG6OvdIBGtsGdpY8Jy0vZNpWKcwqHC5wvq86glWQCdKz67zUBjr3dk7cAR5yjGZco3OGwPIfRsub95JnIqOufYpHIRUMYZVRkyUK8DnO0EWNmJTNaEN_cBTw608ByZVxT-HcE4XjV3IByCe0sz5IrEKnap_ogVU3SM1hlGIMoqUIHqq4QHeFpXkN330w3-4cfoOMG3iycvfrvt3DC46ms611oV8V3cocKuSL3_Bx_AbN2jWk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Recognition+using+re-recognition+and+statistical+classification&rft.inventor=BUNTSCHUH%2C+BRUCE&rft.inventor=LEVIT%2C+MICHAEL&rft.inventor=CHANG%2C+SHUANGYU&rft.date=2011-11-17&rft.externalDBID=A1&rft.externalDocID=AU2010256788A1