Modelling crop water footprint and virtual water flow in the Yellow River Basin using the SWAT model

【Objective】 The Yellow River Basin, the second largest in China, plays a crucial role in food production in the country. In this paper, we analyze the spatiotemporal variations in agricultural water use efficiency and calculate water resource flow patterns and their optimal allocation at watershed s...

Full description

Saved in:
Bibliographic Details
Published inGuanʻgai paishui xuebao Vol. 44; no. 2; pp. 19 - 26
Main Authors ZI Tiantian, LIU Jing, XUAN Keyang
Format Journal Article
LanguageChinese
Published Science Press 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 【Objective】 The Yellow River Basin, the second largest in China, plays a crucial role in food production in the country. In this paper, we analyze the spatiotemporal variations in agricultural water use efficiency and calculate water resource flow patterns and their optimal allocation at watershed scale in the basin. 【Method】 Using the SWAT model, the basin was divided into sub-basin units to calculate crop water footprints. Virtual water flows were analyzed using social equity principles and the gravitational force method. 【Result】In 2020, the total crop water footprint in the basin was 76.91 billion m3, with green water accounting for 69.7%. The middle reaches contributed the largest to the total water footprint, significantly surpassing upstream and downstream regions. Both blue and green water footprints exhibited seasonal variation, peaking between May and August. The average water footprint for crop production was 0.72 m3/kg, with notable spatial differences: high in the Northern regions and low in the
AbstractList 【Objective】 The Yellow River Basin, the second largest in China, plays a crucial role in food production in the country. In this paper, we analyze the spatiotemporal variations in agricultural water use efficiency and calculate water resource flow patterns and their optimal allocation at watershed scale in the basin. 【Method】 Using the SWAT model, the basin was divided into sub-basin units to calculate crop water footprints. Virtual water flows were analyzed using social equity principles and the gravitational force method. 【Result】In 2020, the total crop water footprint in the basin was 76.91 billion m3, with green water accounting for 69.7%. The middle reaches contributed the largest to the total water footprint, significantly surpassing upstream and downstream regions. Both blue and green water footprints exhibited seasonal variation, peaking between May and August. The average water footprint for crop production was 0.72 m3/kg, with notable spatial differences: high in the Northern regions and low in the
Author LIU Jing
ZI Tiantian
XUAN Keyang
Author_xml – sequence: 1
  fullname: ZI Tiantian
  organization: 1. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; 2. College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
– sequence: 2
  fullname: LIU Jing
  organization: 1. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; 2. College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China; 3. Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China
– sequence: 3
  fullname: XUAN Keyang
  organization: 1. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; 2. College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
BookMark eNqtjcFOAyEQhjnUxKp9Aw-8QFcGaLdXNRo9eKlNjCcyBXalUtgAbePbyxp9AzOHyfxf_m8uyCTEYAm5BtaAWHB-s2t0-HRN3w-54YxLATAhU1i2fC4EtOdklrPbMgbAamE5JeYlGuu9Cz3VKQ70hMUm2sVYhuRCoRgMPbpUDuj_mI8n6gItH5a-12q91u5YwR3mGh_y6Brh69vthu5H_RU569BnO_vdl-T58WFz_zQ3EXeqPtpj-lIRnfoJYuoVpuK0two73gETVrZWSylXW2aE5quFAC3raPGfrm8U8Gms
ContentType Journal Article
DBID DOA
DOI 10.13522/j.cnki.ggps.2024311
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 26
ExternalDocumentID oai_doaj_org_article_af2f103e47ec4448b0d3c28531c4c4cc
GroupedDBID 5XA
5XE
7X2
ABJNI
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
CCPQU
CW9
GROUPED_DOAJ
GUQSH
HCIFZ
M0K
PHGZM
PHGZT
TGD
U1G
U5N
ID FETCH-doaj_primary_oai_doaj_org_article_af2f103e47ec4448b0d3c28531c4c4cc3
IEDL.DBID DOA
ISSN 1672-3317
IngestDate Wed Aug 27 01:30:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_af2f103e47ec4448b0d3c28531c4c4cc3
OpenAccessLink https://doaj.org/article/af2f103e47ec4448b0d3c28531c4c4cc
ParticipantIDs doaj_primary_oai_doaj_org_article_af2f103e47ec4448b0d3c28531c4c4cc
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Guanʻgai paishui xuebao
PublicationYear 2025
Publisher Science Press
Publisher_xml – name: Science Press
SSID ssib001101356
ssib051374040
ssib006567438
ssib002264380
ssib046786310
ssj0002507593
Score 4.7625093
Snippet 【Objective】 The Yellow River Basin, the second largest in China, plays a crucial role in food production in the country. In this paper, we analyze the...
SourceID doaj
SourceType Open Website
StartPage 19
SubjectTerms water footprint; virtual water flow; swat model; yellow river basin; crops
Title Modelling crop water footprint and virtual water flow in the Yellow River Basin using the SWAT model
URI https://doaj.org/article/af2f103e47ec4448b0d3c28531c4c4cc
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqPhmD17TZh9JtsdWLFXQg1asp5B9pFYlKTVa8Nc7s4nanjwogRx2IY9hmPkmmfk-Qk651irWUOQoq2QglVMBStriKUy6OWOO4-zw1XU8vJOX42i8JPWFPWE1PXBtuE6W85yFwsnEGQm1hA6tMBySDDMSDoPRF3LeUjHlgQB4mlghAouRWv3H0yJsvv_2PIgWKl4COhETiQwbFhSM6QAUkprBl8UJDwRk3WYODwFM56ltiudpezKZIQM4h6TMVjQAfLIabJKNBmXSXv12W2Tt43GbWNQ98xTcFHW76AJg5pzmZVnhx72KZoWl79M5DpR87b2UCzotKIBE-oB_aRb0Bvs4aD97hWXsmZ_4zdv73oh6UZ0dcjE4H50NA3ysdFZzWaTILu0XwOZpY_P0N5uLXdIqysLtESoyKLhCE2soyqGyVNq4rpVWOx4ZmRm7T_p_v9_Bf1zkkKxz1O71HddHpFXN39wxAIpKn3jf-QToV8Wi
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+crop+water+footprint+and+virtual+water+flow+in+the+Yellow+River+Basin+using+the+SWAT+model&rft.jtitle=Guan%CA%BBgai+paishui+xuebao&rft.au=ZI+Tiantian&rft.au=LIU+Jing&rft.au=XUAN+Keyang&rft.date=2025-02-01&rft.pub=Science+Press&rft.issn=1672-3317&rft.volume=44&rft.issue=2&rft.spage=19&rft.epage=26&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2024311&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af2f103e47ec4448b0d3c28531c4c4cc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-3317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-3317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-3317&client=summon