Model Modification of the Mill Transmission System Based on the PSO-BP Neural Network

Aiming at the complexity of the mill transmission system structure, the uncertainty of the constraint conditions among the components and the nonlinearity, a finite element model correction method based on the PSO-BP neural network is proposed in this study. This method approximates the nonlinear ma...

Full description

Saved in:
Bibliographic Details
Published inJixie Chuandong Vol. 48; pp. 48 - 53
Main Authors Tao Zheng, Bao Xianle, Guo Qintao, Zhou Tianyang
Format Journal Article
LanguageChinese
Published Editorial Office of Journal of Mechanical Transmission 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aiming at the complexity of the mill transmission system structure, the uncertainty of the constraint conditions among the components and the nonlinearity, a finite element model correction method based on the PSO-BP neural network is proposed in this study. This method approximates the nonlinear mapping relationship between the two by improving the back propagation (BP) neural network, combines with the actual structural response, and uses the generalization property of the neural network to obtain the numerical value of the model design parameters. After the correction, the frequency error is reduced from a maximum of 18% to about 4%, and the error range of the correction coefficient is all within 0.5%, while obviously improving the accuracy of the finite element model. Meanwhile, it does not need a large number of iterative solving steps, avoids the complex nonlinear optimization process of the traditional inverse problem model modification method, improves the efficiency, verifies the feasibility of the P
AbstractList Aiming at the complexity of the mill transmission system structure, the uncertainty of the constraint conditions among the components and the nonlinearity, a finite element model correction method based on the PSO-BP neural network is proposed in this study. This method approximates the nonlinear mapping relationship between the two by improving the back propagation (BP) neural network, combines with the actual structural response, and uses the generalization property of the neural network to obtain the numerical value of the model design parameters. After the correction, the frequency error is reduced from a maximum of 18% to about 4%, and the error range of the correction coefficient is all within 0.5%, while obviously improving the accuracy of the finite element model. Meanwhile, it does not need a large number of iterative solving steps, avoids the complex nonlinear optimization process of the traditional inverse problem model modification method, improves the efficiency, verifies the feasibility of the P
Author Bao Xianle
Tao Zheng
Guo Qintao
Zhou Tianyang
Author_xml – sequence: 1
  fullname: Tao Zheng
– sequence: 2
  fullname: Bao Xianle
– sequence: 3
  fullname: Guo Qintao
– sequence: 4
  fullname: Zhou Tianyang
BookMark eNqtTMtqAjEUzcJCbfUf8gMDaeah2SqKLqyCug53kjvtrZmJJJHi3zeVfkI353CeL2w0-AFHbPwmRFXIulTPbBojtUJI2VSyno3ZeectOp6ROjKQyA_cdzx9It-Rc_wUYIg95VUOjveYsOcLiGh51r-tw3FfLA78HW8BXKb07cNlwp46cBGnf_zKtuvVabkprIcvfQ3UQ7hrD6Qfhg8fGkIi41Arg8baRoFq60qZel7OGjXvKkAwUrRN-Z9fPxqSXJ0
ContentType Journal Article
DBID DOA
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 53
ExternalDocumentID oai_doaj_org_article_9cecdd69a9b549c5837698f4aeac20b6
GroupedDBID -03
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
ID FETCH-doaj_primary_oai_doaj_org_article_9cecdd69a9b549c5837698f4aeac20b63
IEDL.DBID DOA
ISSN 1004-2539
IngestDate Tue Oct 22 15:13:56 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_9cecdd69a9b549c5837698f4aeac20b63
OpenAccessLink https://doaj.org/article/9cecdd69a9b549c5837698f4aeac20b6
ParticipantIDs doaj_primary_oai_doaj_org_article_9cecdd69a9b549c5837698f4aeac20b6
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Jixie Chuandong
PublicationYear 2024
Publisher Editorial Office of Journal of Mechanical Transmission
Publisher_xml – name: Editorial Office of Journal of Mechanical Transmission
SSID ssib002264257
ssib051372994
ssib000269789
ssib001129495
ssj0002912140
ssib036435760
Score 4.7665377
Snippet Aiming at the complexity of the mill transmission system structure, the uncertainty of the constraint conditions among the components and the nonlinearity, a...
SourceID doaj
SourceType Open Website
StartPage 48
SubjectTerms Model modification;Neural network;Modal analysis;Similar design;Hierarchical correction
Title Model Modification of the Mill Transmission System Based on the PSO-BP Neural Network
URI https://doaj.org/article/9cecdd69a9b549c5837698f4aeac20b6
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED2hTiwIVBDfuoE1InFsxx4bRFUYSiWo1C1KHEcMqEWoLPx67uwIsjGUJVIiy7HOp9y73PM7gJtc2FoqmSVNattEFq1MDJMcjWsYANNGd4EgO9ezpXxcqdWg1RdzwqI8cDTcrXXeta22tW0olXGKEiptTSdrz-KCTRTbTu0gmYr1M22HOuqMKuRQyItwgPit9-UUlwl4_3iuyria1Xsqf9OFzUR_upKZG0Jxc_GByH-IRtNDOOhhJE7i8o9g7-t1DEtubPaGdGX-TzA5bjokiId85A9DXKJ95R9kGKXKsaQo1iLd86jF81NSLpAFO2jyeWSIH8PD9P7lbpbwOqr3qE5RsV50eEBWrHorVn9ZMT-B0Xqz9qeAneE0sM5k4Z3MjDOqqL02hdWF8J1Pz6Dc_X3n_zHJBewLghiRQ30Jo-3Hp78iiLBtroM3fAOewLgo
link.rule.ids 315,783,787,2109
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Modification+of+the+Mill+Transmission+System+Based+on+the+PSO-BP+Neural+Network&rft.jtitle=Jixie+Chuandong&rft.au=Tao+Zheng&rft.au=Bao+Xianle&rft.au=Guo+Qintao&rft.au=Zhou+Tianyang&rft.date=2024-02-01&rft.pub=Editorial+Office+of+Journal+of+Mechanical+Transmission&rft.issn=1004-2539&rft.volume=48&rft.spage=48&rft.epage=53&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9cecdd69a9b549c5837698f4aeac20b6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1004-2539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1004-2539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1004-2539&client=summon