Research on online detection of particle size in fine-grained coal classification overflow

Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out, and the classification parameters can be adjusted to reduce the content of coarse particles in the overflow and improve the total clean coal recovery rate. The...

Full description

Saved in:
Bibliographic Details
Published inGong kuang zi dong hua = Industry and mine automation Vol. 50; no. 5; pp. 44 - 51, 59
Main Authors SUN Haozhi, MA Jiao, SHI Changliang, WANG Hanlu
Format Journal Article
LanguageChinese
Published Editorial Department of Industry and Mine Automation 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out, and the classification parameters can be adjusted to reduce the content of coarse particles in the overflow and improve the total clean coal recovery rate. The current research generally limits the detection of overflow particle size to around 180 μm, and the upper limit of slurry volume concentration is 10%. It cannot meet the requirements of overflow particle size detection for fine-grained coal classification cyclones with coarse particle size, wide particle size range, and high volume concentration. A set of ultrasonic online particle size detection system has been developed to improve the upper limit of coal particle size and slurry volume concentration detection. Based on the ultrasonic attenuation model, a coal particle size detection model suitable for on-site conditions of fine-grained coal classification with coal particle size of 44.5-600 μm and slurry volume
AbstractList Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out, and the classification parameters can be adjusted to reduce the content of coarse particles in the overflow and improve the total clean coal recovery rate. The current research generally limits the detection of overflow particle size to around 180 μm, and the upper limit of slurry volume concentration is 10%. It cannot meet the requirements of overflow particle size detection for fine-grained coal classification cyclones with coarse particle size, wide particle size range, and high volume concentration. A set of ultrasonic online particle size detection system has been developed to improve the upper limit of coal particle size and slurry volume concentration detection. Based on the ultrasonic attenuation model, a coal particle size detection model suitable for on-site conditions of fine-grained coal classification with coal particle size of 44.5-600 μm and slurry volume
Author SHI Changliang
MA Jiao
SUN Haozhi
WANG Hanlu
Author_xml – sequence: 1
  fullname: SUN Haozhi
  organization: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 2
  fullname: MA Jiao
  organization: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 3
  fullname: SHI Changliang
– sequence: 4
  fullname: WANG Hanlu
  organization: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
BookMark eNqtjctKxDAUhrMYwVHnHbJw25qTXtKuRdGtuBjchJP0ZMwQkyEp3p7equMbCD_88PFfztgqpkiMXYKooZFKXu1rX0qsoVdQyQ7eaylkK1ohQKzY-g9vT9mmFG9EJ-QAHXRr9vRAhTDbZ57iouAj8YlmsrP_Bo4fMM_eBuLFfxL3kbslUu0yLjZxmzBwG3BZdd7ib-mVsgvp7YKdOAyFNkc_Z_e3N4_Xd9WUcK8P2b9g_tAJvf4BKe_08UsrMgDNKBujVOtGYfpuaFGNYI2Yhr5v_nPrC5acZtM
ContentType Journal Article
DBID DOA
DOI 10.13272/j.issn.1671-251x.2024040010
DatabaseName Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 51, 59
ExternalDocumentID oai_doaj_org_article_7eb113923b774f90b6584a791cb0d866
GroupedDBID ABJNI
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-doaj_primary_oai_doaj_org_article_7eb113923b774f90b6584a791cb0d8663
IEDL.DBID DOA
ISSN 1671-251X
IngestDate Tue Oct 22 15:14:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_7eb113923b774f90b6584a791cb0d8663
OpenAccessLink https://doaj.org/article/7eb113923b774f90b6584a791cb0d866
ParticipantIDs doaj_primary_oai_doaj_org_article_7eb113923b774f90b6584a791cb0d866
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Gong kuang zi dong hua = Industry and mine automation
PublicationYear 2024
Publisher Editorial Department of Industry and Mine Automation
Publisher_xml – name: Editorial Department of Industry and Mine Automation
SSID ssib050281515
ssib036434532
ssib002258372
ssib051371899
ssj0002912225
ssib001105046
ssib001050614
ssib006564368
Score 4.784881
Snippet Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out, and the...
SourceID doaj
SourceType Open Website
StartPage 44
SubjectTerms coal particle size distribution
coal washing and selection
detection of overflow particle size
fine-grained coal classification
hydraulic classification
ultrasonic attenuation
Title Research on online detection of particle size in fine-grained coal classification overflow
URI https://doaj.org/article/7eb113923b774f90b6584a791cb0d866
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yB9GD-MQ3Oey1bps0TXNUcVkFPSkULyVtE12RdtGKsr_emaTL1pMHPSZt85g0me-DyTeEDJmVpSmLMFAVZ0BQ8LKyLqug4mFRxGkslLsUdnuXTB7im0xkvVRfGBPm5YG94UYSDhNAKYwXAFSsCgt0mVqqCDqo0sSLbYeqR6Y80RFh0hcuw4q-kBYTwMyWjh1QDUqxL8ocSrFY3rgU4IUjsXScIuJwpndAHs98piIkTsjuEhkFABqyVTJ0aSWYZKMXt6PPFs--gJeCJ41xnD9yBTinNt4kGx0apefeCltkZf68TdZ7GoU75HERm0ebmnpdDVqZ1kVwQYWls86G9H06N3RaUwuvBE-YesJUtGyg_RIhOsYkaf8RbB_72nzukuvx1f3lJMCh5TOve5GjErWrgPXJu7bz39aH75FB3dRmn1ApNcyZsxJJqGVGa5XIMEm1RJ4U2QNy8ff-Dv-jkSOyhivkAxuPyaB9-zAnAD7a4tT9Z98Q58xB
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+online+detection+of+particle+size+in+fine-grained+coal+classification+overflow&rft.jtitle=Gong+kuang+zi+dong+hua+%3D+Industry+and+mine+automation&rft.au=SUN+Haozhi&rft.au=MA+Jiao&rft.au=SHI+Changliang&rft.au=WANG+Hanlu&rft.date=2024-05-01&rft.pub=Editorial+Department+of+Industry+and+Mine+Automation&rft.issn=1671-251X&rft.volume=50&rft.issue=5&rft.spage=44&rft.epage=51%2C+59&rft_id=info:doi/10.13272%2Fj.issn.1671-251x.2024040010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7eb113923b774f90b6584a791cb0d866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1671-251X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1671-251X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1671-251X&client=summon