Research on online detection of particle size in fine-grained coal classification overflow
Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out, and the classification parameters can be adjusted to reduce the content of coarse particles in the overflow and improve the total clean coal recovery rate. The...
Saved in:
Published in | Gong kuang zi dong hua = Industry and mine automation Vol. 50; no. 5; pp. 44 - 51, 59 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
Editorial Department of Industry and Mine Automation
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out, and the classification parameters can be adjusted to reduce the content of coarse particles in the overflow and improve the total clean coal recovery rate. The current research generally limits the detection of overflow particle size to around 180 μm, and the upper limit of slurry volume concentration is 10%. It cannot meet the requirements of overflow particle size detection for fine-grained coal classification cyclones with coarse particle size, wide particle size range, and high volume concentration. A set of ultrasonic online particle size detection system has been developed to improve the upper limit of coal particle size and slurry volume concentration detection. Based on the ultrasonic attenuation model, a coal particle size detection model suitable for on-site conditions of fine-grained coal classification with coal particle size of 44.5-600 μm and slurry volume |
---|---|
AbstractList | Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out, and the classification parameters can be adjusted to reduce the content of coarse particles in the overflow and improve the total clean coal recovery rate. The current research generally limits the detection of overflow particle size to around 180 μm, and the upper limit of slurry volume concentration is 10%. It cannot meet the requirements of overflow particle size detection for fine-grained coal classification cyclones with coarse particle size, wide particle size range, and high volume concentration. A set of ultrasonic online particle size detection system has been developed to improve the upper limit of coal particle size and slurry volume concentration detection. Based on the ultrasonic attenuation model, a coal particle size detection model suitable for on-site conditions of fine-grained coal classification with coal particle size of 44.5-600 μm and slurry volume |
Author | SHI Changliang MA Jiao SUN Haozhi WANG Hanlu |
Author_xml | – sequence: 1 fullname: SUN Haozhi organization: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China – sequence: 2 fullname: MA Jiao organization: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China – sequence: 3 fullname: SHI Changliang – sequence: 4 fullname: WANG Hanlu organization: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China |
BookMark | eNqtjctKxDAUhrMYwVHnHbJw25qTXtKuRdGtuBjchJP0ZMwQkyEp3p7equMbCD_88PFfztgqpkiMXYKooZFKXu1rX0qsoVdQyQ7eaylkK1ohQKzY-g9vT9mmFG9EJ-QAHXRr9vRAhTDbZ57iouAj8YlmsrP_Bo4fMM_eBuLFfxL3kbslUu0yLjZxmzBwG3BZdd7ib-mVsgvp7YKdOAyFNkc_Z_e3N4_Xd9WUcK8P2b9g_tAJvf4BKe_08UsrMgDNKBujVOtGYfpuaFGNYI2Yhr5v_nPrC5acZtM |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.13272/j.issn.1671-251x.2024040010 |
DatabaseName | Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 51, 59 |
ExternalDocumentID | oai_doaj_org_article_7eb113923b774f90b6584a791cb0d866 |
GroupedDBID | ABJNI ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ |
ID | FETCH-doaj_primary_oai_doaj_org_article_7eb113923b774f90b6584a791cb0d8663 |
IEDL.DBID | DOA |
ISSN | 1671-251X |
IngestDate | Tue Oct 22 15:14:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | Chinese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-doaj_primary_oai_doaj_org_article_7eb113923b774f90b6584a791cb0d8663 |
OpenAccessLink | https://doaj.org/article/7eb113923b774f90b6584a791cb0d866 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7eb113923b774f90b6584a791cb0d866 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Gong kuang zi dong hua = Industry and mine automation |
PublicationYear | 2024 |
Publisher | Editorial Department of Industry and Mine Automation |
Publisher_xml | – name: Editorial Department of Industry and Mine Automation |
SSID | ssib050281515 ssib036434532 ssib002258372 ssib051371899 ssj0002912225 ssib001105046 ssib001050614 ssib006564368 |
Score | 4.784881 |
Snippet | Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out, and the... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 44 |
SubjectTerms | coal particle size distribution coal washing and selection detection of overflow particle size fine-grained coal classification hydraulic classification ultrasonic attenuation |
Title | Research on online detection of particle size in fine-grained coal classification overflow |
URI | https://doaj.org/article/7eb113923b774f90b6584a791cb0d866 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yB9GD-MQ3Oey1bps0TXNUcVkFPSkULyVtE12RdtGKsr_emaTL1pMHPSZt85g0me-DyTeEDJmVpSmLMFAVZ0BQ8LKyLqug4mFRxGkslLsUdnuXTB7im0xkvVRfGBPm5YG94UYSDhNAKYwXAFSsCgt0mVqqCDqo0sSLbYeqR6Y80RFh0hcuw4q-kBYTwMyWjh1QDUqxL8ocSrFY3rgU4IUjsXScIuJwpndAHs98piIkTsjuEhkFABqyVTJ0aSWYZKMXt6PPFs--gJeCJ41xnD9yBTinNt4kGx0apefeCltkZf68TdZ7GoU75HERm0ebmnpdDVqZ1kVwQYWls86G9H06N3RaUwuvBE-YesJUtGyg_RIhOsYkaf8RbB_72nzukuvx1f3lJMCh5TOve5GjErWrgPXJu7bz39aH75FB3dRmn1ApNcyZsxJJqGVGa5XIMEm1RJ4U2QNy8ff-Dv-jkSOyhivkAxuPyaB9-zAnAD7a4tT9Z98Q58xB |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+online+detection+of+particle+size+in+fine-grained+coal+classification+overflow&rft.jtitle=Gong+kuang+zi+dong+hua+%3D+Industry+and+mine+automation&rft.au=SUN+Haozhi&rft.au=MA+Jiao&rft.au=SHI+Changliang&rft.au=WANG+Hanlu&rft.date=2024-05-01&rft.pub=Editorial+Department+of+Industry+and+Mine+Automation&rft.issn=1671-251X&rft.volume=50&rft.issue=5&rft.spage=44&rft.epage=51%2C+59&rft_id=info:doi/10.13272%2Fj.issn.1671-251x.2024040010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7eb113923b774f90b6584a791cb0d866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1671-251X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1671-251X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1671-251X&client=summon |