Regularization technique and numerical analysis of the mixed system of first and second-kind Volterra–Fredholm integral equations

‎‎ It is important to note that mixed systems of first and second-kind Volterra–Fredholm integral equations are ill-posed problems, so that solving discretized system of such problems has a lot of difficulties. We will apply the regularization method to convert this mixed system (ill-posed problem)...

Full description

Saved in:
Bibliographic Details
Published inIranian journal of numerical analysis and optimization Vol. 9; no. 1; pp. 127 - 150
Main Authors S. Pishbin, J. Shokri
Format Journal Article
LanguageEnglish
Published Ferdowsi University of Mashhad 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ‎‎ It is important to note that mixed systems of first and second-kind Volterra–Fredholm integral equations are ill-posed problems, so that solving discretized system of such problems has a lot of difficulties. We will apply the regularization method to convert this mixed system (ill-posed problem) to system of the second kind Volterra–Fredholm integral equations (well-posed problem). A numerical method based on Chebyshev wavelets is suggested for solving the obtained well-posed problem, and convergence analysis of the method is discussed. For showing efficiency of the method, some test problems, for which the exact solution is known, are considered.
AbstractList ‎‎ It is important to note that mixed systems of first and second-kind Volterra–Fredholm integral equations are ill-posed problems, so that solving discretized system of such problems has a lot of difficulties. We will apply the regularization method to convert this mixed system (ill-posed problem) to system of the second kind Volterra–Fredholm integral equations (well-posed problem). A numerical method based on Chebyshev wavelets is suggested for solving the obtained well-posed problem, and convergence analysis of the method is discussed. For showing efficiency of the method, some test problems, for which the exact solution is known, are considered.
Author S. Pishbin
J. Shokri
Author_xml – sequence: 1
  fullname: S. Pishbin
  organization: Urmia University, Urmia, Iran
– sequence: 2
  fullname: J. Shokri
  organization: Urmia University, Urmia, Iran
BookMark eNqtT0tOwzAUtFCRKNADsPMFGhInccgaUcEWVWyjh_2SvOLY1HYQYYXEEbghJyFUiBOwmo80M5pTtrDOImMXWZoIkcrqknYWXPJSU5bIPLsSR2wpCpGvZS3rxR-vqhO2CmGXpqkQhcyrYsk-7rEbDXh6g0jO8oiqt7QfkYPV3I4DelJgZgVmChS4a3nskQ_0ipqHKUQcfryWfIiHTEDlrF4_0cwfnInoPXy9f2486t6ZgZON2Pm5EvfjYTOcs-MWTMDVL56xu83N9vp2rR3smmdPA_ipcUDNwXC-a8BHUgab8jHLpFI6R1UXZVFAnSk9P5MVilK0df6fXd8uoHgq
ContentType Journal Article
DBID DOA
DOI 10.22067/ijnao.v9i1.63182
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2423-6969
EndPage 150
ExternalDocumentID oai_doaj_org_article_5b116ccd3ec94544a91cd63767e252f9
GroupedDBID ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
OK1
ID FETCH-doaj_primary_oai_doaj_org_article_5b116ccd3ec94544a91cd63767e252f93
IEDL.DBID DOA
ISSN 2423-6977
IngestDate Tue Oct 22 15:14:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_5b116ccd3ec94544a91cd63767e252f93
OpenAccessLink https://doaj.org/article/5b116ccd3ec94544a91cd63767e252f9
ParticipantIDs doaj_primary_oai_doaj_org_article_5b116ccd3ec94544a91cd63767e252f9
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Iranian journal of numerical analysis and optimization
PublicationYear 2019
Publisher Ferdowsi University of Mashhad
Publisher_xml – name: Ferdowsi University of Mashhad
SSID ssj0002246374
ssib046787288
ssib044742122
Score 4.224252
Snippet ‎‎ It is important to note that mixed systems of first and second-kind Volterra–Fredholm integral equations are ill-posed problems, so that solving discretized...
SourceID doaj
SourceType Open Website
StartPage 127
SubjectTerms chebyshev wavelets
convergence ‎analysis
mixed systems of first and second-kind volterra-fredholm integral ‎equations
regularization‎ ‎method
Title Regularization technique and numerical analysis of the mixed system of first and second-kind Volterra–Fredholm integral equations
URI https://doaj.org/article/5b116ccd3ec94544a91cd63767e252f9
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27TsMwFIYt1ImFO-IuD6xuc3EuHgERFSQYEKBukWM7UkpJStIiRiQegTfkSTi-qCoTA4yxYic5OYn_42N_RuiUUtAcSSGJLFNGaCw8wpkXEiHDtCg4Lz2z1-HNbTx8oNejaLS01ZeeE2bxwNZwg6jw_VhAVSUYjSjlzBcy1gwSFURBaZfueWwpmAJPojTRmc5Fxw1_gzQJHJhrbKAvFNrQKWetJ0gMKsimPAONMx9U45o3_VdW-f0YnD74AfQ3PU-2gdacZMRn9lY30Yqqt9C6k4_YfZzdNvq4M_vKt25lJV7gWTGvJa7nNjczgSPLIcFNiUH-4efqDdqxSGddVlagCE2dTkfLkjxB3I4fG51Xb_nX-2fWKqkHU7FjTUywerHE8G4HXWWX9xdDoh8kn1qURa7h0qYATJ47k-e_mTzcRb26qdUewkkgQD9QFioOUoRHDPQdnCDSAt4Ai_g-Ov_79Q7-o5FDtApah9npY0eoN2vn6hj0xKw4Ma7zDf60zMc
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularization+technique+and+numerical+analysis+of+the+mixed+system+of+first+and+second-kind+Volterra%E2%80%93Fredholm+integral+equations&rft.jtitle=Iranian+journal+of+numerical+analysis+and+optimization&rft.au=S.+Pishbin&rft.au=J.+Shokri&rft.date=2019-03-01&rft.pub=Ferdowsi+University+of+Mashhad&rft.issn=2423-6977&rft.eissn=2423-6969&rft.volume=9&rft.issue=1&rft.spage=127&rft.epage=150&rft_id=info:doi/10.22067%2Fijnao.v9i1.63182&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b116ccd3ec94544a91cd63767e252f9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2423-6977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2423-6977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2423-6977&client=summon