Feasibility Study of Echocardiographic Images Segmentation Based on Sparse Representation
A semi-automatic method for the segmentation of the Left Ventricle in echocardiography images is presented. The manual segmentation of the left ventricle in all image sequences takes a lot of time. The proposed method is based on sparse representation and the design of overcomplete dictionaries base...
Saved in:
Published in | Iranian journal of electrical & electronic engineering Vol. 18; no. 2; p. 1993 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Iran University of Science and Technology
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A semi-automatic method for the segmentation of the Left Ventricle in echocardiography images is presented. The manual segmentation of the left ventricle in all image sequences takes a lot of time. The proposed method is based on sparse representation and the design of overcomplete dictionaries based on prior knowledge of the intensity variation time curves (IVTC). We used the sparse recovery algorithm of orthogonal matching pursuit (OMP) to find the sparse coefficients of the IVTC signals. We obtained the histogram of non-zero sparse coefficients for all images. The binary images from successive frames were constructed via thresholding. In addition, we defined one image representing all the frames, dividing all the points of the heart into three groups. One group involved the points located inside the cavities in all frames. The second group included the points that belonged to the tissue in all frames. Points that in some frames are located inside the cavities and in some other frames are located inside the tissue. The results on 2D echocardiographic images acquired from both healthy and patient subjects showed good agreement with manual tracing and took a short time for the contour, including the whole left ventricle. According to the cardiology specialist, the value of ejection fraction is correctly calculated, and the error percentages were 0.83 and 2.33 for two healthy data samples. The proposed method can be applied to 3D echocardiography images to obtain the left ventricular volume. This approach also can be used for other types of medical images. |
---|---|
AbstractList | A semi-automatic method for the segmentation of the Left Ventricle in echocardiography images is presented. The manual segmentation of the left ventricle in all image sequences takes a lot of time. The proposed method is based on sparse representation and the design of overcomplete dictionaries based on prior knowledge of the intensity variation time curves (IVTC). We used the sparse recovery algorithm of orthogonal matching pursuit (OMP) to find the sparse coefficients of the IVTC signals. We obtained the histogram of non-zero sparse coefficients for all images. The binary images from successive frames were constructed via thresholding. In addition, we defined one image representing all the frames, dividing all the points of the heart into three groups. One group involved the points located inside the cavities in all frames. The second group included the points that belonged to the tissue in all frames. Points that in some frames are located inside the cavities and in some other frames are located inside the tissue. The results on 2D echocardiographic images acquired from both healthy and patient subjects showed good agreement with manual tracing and took a short time for the contour, including the whole left ventricle. According to the cardiology specialist, the value of ejection fraction is correctly calculated, and the error percentages were 0.83 and 2.33 for two healthy data samples. The proposed method can be applied to 3D echocardiography images to obtain the left ventricular volume. This approach also can be used for other types of medical images. |
Author | H. Behnam M. Shojaeifard P. Gifani S. Fouladifard |
Author_xml | – sequence: 1 fullname: S. Fouladifard organization: Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran – sequence: 2 fullname: H. Behnam organization: Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran – sequence: 3 fullname: P. Gifani organization: Faculty of Medical Sciences and Technology, Islamic Azad University, Science and Research Branch, Tehran, Iran – sequence: 4 fullname: M. Shojaeifard organization: Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran |
BookMark | eNqtjsFKxDAURYOMYNX5h_xAIU3iJLNVZnC21o2r8Jq8dp60TUnion9vEf0DV_dyDlzuPdvNccYbVkllVa3sUexY1Rj1VEsrzR3b50yd0Npo2QhbsY8zwkZopLLytnyFlceen_w1ekiB4pBguZLnlwkGzLzFYcK5QKE482fIGPhW2gVSRv6GS8L8px_ZbQ9jxv1vPrDL-fT-8lqHCJ9uSTRBWl0Ecj8gpsFBKuRHdNoevNq-dwqUFkHDoTemE76xRzBBgvrPrW_h-GBY |
ContentType | Journal Article |
DBID | DOA |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2383-3890 |
EndPage | 1993 |
ExternalDocumentID | oai_doaj_org_article_486c3389b3a340d4a6f77b0c189a7d2a |
GroupedDBID | ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ OK1 |
ID | FETCH-doaj_primary_oai_doaj_org_article_486c3389b3a340d4a6f77b0c189a7d2a3 |
IEDL.DBID | DOA |
ISSN | 1735-2827 |
IngestDate | Tue Oct 22 15:13:51 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-doaj_primary_oai_doaj_org_article_486c3389b3a340d4a6f77b0c189a7d2a3 |
OpenAccessLink | https://doaj.org/article/486c3389b3a340d4a6f77b0c189a7d2a |
ParticipantIDs | doaj_primary_oai_doaj_org_article_486c3389b3a340d4a6f77b0c189a7d2a |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Iranian journal of electrical & electronic engineering |
PublicationYear | 2022 |
Publisher | Iran University of Science and Technology |
Publisher_xml | – name: Iran University of Science and Technology |
SSID | ssib044742108 ssib041538295 ssj0002246371 |
Score | 4.507119 |
Snippet | A semi-automatic method for the segmentation of the Left Ventricle in echocardiography images is presented. The manual segmentation of the left ventricle in... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 1993 |
SubjectTerms | dictionary design echocardiography intensity variation time curves (ivtc) signal sparse representation temporal super-resolution |
Title | Feasibility Study of Echocardiographic Images Segmentation Based on Sparse Representation |
URI | https://doaj.org/article/486c3389b3a340d4a6f77b0c189a7d2a |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQT_GWB1YLO34lI0WpWqQyUJDKFNlOjEBqWpUydOHbuXaCCBMDLJHlSLZ148c51rknCF1yJlOjTEYyzhIiWMKIpZYSr6mnqgKgpEOi8PhODR_F7VROO7_6Cpqwxh64CdyVSJUDGpVZbrigpTDKa22pY2lmdJk00IhmHTIFM0mEdZx8Z5wKAQyQtS42r9H0RSjesDHNJQHeoX-Y9sfTZbCDtltYiK-b4eyijareQ1sds8B99ARordWyrnGQ_63x3OMcti8XNaXRevrF4dEMtog3PKmeZ21eUY37cFaVGAqTBRDZCt9H_evX6wM0GuQPN0MSRlYsGv-JIjhCxwqIU9HGqfgtTvwQ9ep5XR0hbJl2wphMlokToqRWGm6V9JI7oGdeHaP-3_s7-Y9GTtFmEtIN4q3HGeqtlu_VOYCAlb2I3xue44_8E6yUtDg |
link.rule.ids | 315,783,787,2109 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+Study+of+Echocardiographic+Images+Segmentation+Based+on+Sparse+Representation&rft.jtitle=Iranian+journal+of+electrical+%26+electronic+engineering&rft.au=S.+Fouladifard&rft.au=H.+Behnam&rft.au=P.+Gifani&rft.au=M.+Shojaeifard&rft.date=2022-06-01&rft.pub=Iran+University+of+Science+and+Technology&rft.issn=1735-2827&rft.eissn=2383-3890&rft.volume=18&rft.issue=2&rft.spage=1993&rft.epage=1993&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_486c3389b3a340d4a6f77b0c189a7d2a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1735-2827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1735-2827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1735-2827&client=summon |