基于特征性脂肪酸和甘油三酯指标的油茶籽油掺伪 定性鉴别模型对比分析

为解决油茶籽油掺伪其他植物油的定性鉴别问题,在油茶籽油中分别掺入大豆油、花生油、葵花籽油、棉籽油、葡萄籽油、菜籽油、棕榈油和米糠油,设置高和低两种不同掺伪梯度,基于14个特征性脂肪酸和甘油三酯指标,运用Python语言构建并对比分析了二分类决策树模型、多分类决策树模型和多层感知机人工神经网络(MLP-ANN)模型用于油茶籽油掺伪定性鉴别的效果。结果表明:高和低掺伪梯度下,二分类决策树模型对油茶籽油掺伪其他植物油的定性鉴别的准确率均达到0.95以上;多分类决策树模型的精确率和准确率在高掺伪梯度下均达到了0.95,但在低掺伪梯度下仅为0.90;在高和低掺伪梯度下,MLP-ANN模型对油茶籽油掺伪定...

Full description

Saved in:
Bibliographic Details
Published inZhongguo you zhi Vol. 48; no. 1; pp. 66 - 73
Main Author 孙婷婷1,2,刘剑波3,任佳丽1,2,钟海雁1,2,周波1,2SUN Tingting1,2, LIU Jianbo3, REN Jiali1,2, ZHONG Haiyan1,2, ZHOU Bo1,2
Format Journal Article
LanguageEnglish
Published 中粮工科(西安)国际工程有限公司 01.01.2023
Subjects
Online AccessGet full text
ISSN1003-7969
DOI10.19902/j.cnki.zgyz.1003-7969.210653

Cover

Abstract 为解决油茶籽油掺伪其他植物油的定性鉴别问题,在油茶籽油中分别掺入大豆油、花生油、葵花籽油、棉籽油、葡萄籽油、菜籽油、棕榈油和米糠油,设置高和低两种不同掺伪梯度,基于14个特征性脂肪酸和甘油三酯指标,运用Python语言构建并对比分析了二分类决策树模型、多分类决策树模型和多层感知机人工神经网络(MLP-ANN)模型用于油茶籽油掺伪定性鉴别的效果。结果表明:高和低掺伪梯度下,二分类决策树模型对油茶籽油掺伪其他植物油的定性鉴别的准确率均达到0.95以上;多分类决策树模型的精确率和准确率在高掺伪梯度下均达到了0.95,但在低掺伪梯度下仅为0.90;在高和低掺伪梯度下,MLP-ANN模型对油茶籽油掺伪定性鉴别的平均精确率均达到0.98,准确率分别达到0.97和0.98。相比于决策树模型,MLP-ANN模型能很好地实现油茶籽油掺伪定性鉴别。 In order to solve the qualitative identification problem of adulterated oil-tea camellia seed oil with other vegetable oils, soybean oil, peanut oil, sunflower seed oil, cottonseed oil, grape seed oil, rapeseed oil, palm oil and rice bran oil were mixed into oil-tea camellia seed oil respectively, two different adulteration gradients of high and low were set up, and based on characteristic fatty acid and triglyceride indicators, the effects of the binary decision tree model, multi-classification decision tree model and multilayer perceptron artificial neural network (MLP-ANN) model for qualitative identification of adulterated oil-tea camellia seed oil were compared and analysed using Python language. The results showed that the accuracy of the binary decision tree model for qualitative identification of oil-tea camellia seed oil adulterated with other vegetable oils under high and low adulteration gradients was above 0.95. The accuracy and precision of the multi-classification decision tree model reached 0.95 at high adulteration gradient, but only 0.90 at low adulteration gradient. Under high and low adulteration gradients, the average precision of MLP-ANN model for qualitative identification of adulterated oil-tea camellia seed oil reached 0.98, and the accuracy reached 0.97 and 0.98 respectively. Compared with the decision tree model, the MLP-ANN model can well realize the qualitative identification of adulterated oil-tea camellia seed oil.
AbstractList 为解决油茶籽油掺伪其他植物油的定性鉴别问题,在油茶籽油中分别掺入大豆油、花生油、葵花籽油、棉籽油、葡萄籽油、菜籽油、棕榈油和米糠油,设置高和低两种不同掺伪梯度,基于14个特征性脂肪酸和甘油三酯指标,运用Python语言构建并对比分析了二分类决策树模型、多分类决策树模型和多层感知机人工神经网络(MLP-ANN)模型用于油茶籽油掺伪定性鉴别的效果。结果表明:高和低掺伪梯度下,二分类决策树模型对油茶籽油掺伪其他植物油的定性鉴别的准确率均达到0.95以上;多分类决策树模型的精确率和准确率在高掺伪梯度下均达到了0.95,但在低掺伪梯度下仅为0.90;在高和低掺伪梯度下,MLP-ANN模型对油茶籽油掺伪定性鉴别的平均精确率均达到0.98,准确率分别达到0.97和0.98。相比于决策树模型,MLP-ANN模型能很好地实现油茶籽油掺伪定性鉴别。 In order to solve the qualitative identification problem of adulterated oil-tea camellia seed oil with other vegetable oils, soybean oil, peanut oil, sunflower seed oil, cottonseed oil, grape seed oil, rapeseed oil, palm oil and rice bran oil were mixed into oil-tea camellia seed oil respectively, two different adulteration gradients of high and low were set up, and based on characteristic fatty acid and triglyceride indicators, the effects of the binary decision tree model, multi-classification decision tree model and multilayer perceptron artificial neural network (MLP-ANN) model for qualitative identification of adulterated oil-tea camellia seed oil were compared and analysed using Python language. The results showed that the accuracy of the binary decision tree model for qualitative identification of oil-tea camellia seed oil adulterated with other vegetable oils under high and low adulteration gradients was above 0.95. The accuracy and precision of the multi-classification decision tree model reached 0.95 at high adulteration gradient, but only 0.90 at low adulteration gradient. Under high and low adulteration gradients, the average precision of MLP-ANN model for qualitative identification of adulterated oil-tea camellia seed oil reached 0.98, and the accuracy reached 0.97 and 0.98 respectively. Compared with the decision tree model, the MLP-ANN model can well realize the qualitative identification of adulterated oil-tea camellia seed oil.
Author 孙婷婷1,2,刘剑波3,任佳丽1,2,钟海雁1,2,周波1,2SUN Tingting1,2, LIU Jianbo3, REN Jiali1,2, ZHONG Haiyan1,2, ZHOU Bo1,2
Author_xml – sequence: 1
  fullname: 孙婷婷1,2,刘剑波3,任佳丽1,2,钟海雁1,2,周波1,2SUN Tingting1,2, LIU Jianbo3, REN Jiali1,2, ZHONG Haiyan1,2, ZHOU Bo1,2
  organization: 1.林产可食资源安全与加工利用湖南省重点实验室,长沙 410004; 2.中南林业科技大学 食品科学与工程学院, 长沙 410004; 3.岳阳市检验检测中心食品药品检验所,湖南 岳阳 4140001.Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha 410004, China; 2.School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; 3.Food and Drug Inspection Institute of Yueyang City Inspection and Testing Center, Yueyang 414000, Hunan, China
BookMark eNrjYmDJy89LZWBQNTTQM7S0NDDSz9JLzsvO1KtKr6zSMzQwMNY1tzSz1DMyNDAzNWZh4IQLcTDwFhdnGQCBqZmhmaUJJ0Pi0_m7nuzqe9658-m-xmcNy1-0NL1oWvWydcfTST3Pp8x4tmnnkx2dL1vXP-tpf7ag_fmsFqDIi55tzzfuBTKe9e16smeVwtN1s4A6X3Zuedqx-tmKhU_ndT9dv_PZ-ilPO9qezZvAw8CalphTnMoLpbkZPN1cQ5w9dFPyE7PiC4oycxOLKuPzEzPjwQL5RenxiUUlmck5qfHG5pbmaaaJFmbJ5kkmqQaWFibJyZZmyYlmRonGFoaGZsbUNAsABFmKkg
ContentType Journal Article
DBID DOA
DOI 10.19902/j.cnki.zgyz.1003-7969.210653
DatabaseName DOAJ (Directory of Open Access Journals)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 73
ExternalDocumentID oai_doaj_org_article_3797f5a86c7b4e0984cc96ca62a38116
GroupedDBID -02
5XA
5XC
92H
92I
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
GROUPED_DOAJ
TCJ
TGT
U1G
U5L
ID FETCH-doaj_primary_oai_doaj_org_article_3797f5a86c7b4e0984cc96ca62a381163
IEDL.DBID DOA
ISSN 1003-7969
IngestDate Wed Aug 27 01:31:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_3797f5a86c7b4e0984cc96ca62a381163
OpenAccessLink https://doaj.org/article/3797f5a86c7b4e0984cc96ca62a38116
ParticipantIDs doaj_primary_oai_doaj_org_article_3797f5a86c7b4e0984cc96ca62a38116
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Zhongguo you zhi
PublicationYear 2023
Publisher 中粮工科(西安)国际工程有限公司
Publisher_xml – name: 中粮工科(西安)国际工程有限公司
SSID ssj0000561694
Score 4.4117117
Snippet ...
SourceID doaj
SourceType Open Website
StartPage 66
SubjectTerms oil-tea camellia seed oil; decision tree model; multilayer perceptron artificial neural network model; qualitative identification; fatty acid; triglyceride
油茶籽油;决策树模型;多层感知机人工神经网络模型;定性鉴别;脂肪酸;甘油三酯
Title 基于特征性脂肪酸和甘油三酯指标的油茶籽油掺伪 定性鉴别模型对比分析
URI https://doaj.org/article/3797f5a86c7b4e0984cc96ca62a38116
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMQXmfwtDMyPdJJMUU12T5KQ0XQuzVGCEmCeD6BSTJPBdBL5-Zh6hJl4RphFIV32B1oRBjgeGBJy-sbmleZppooVZsnmSSaqBpYVJcrKlWXKimVEisLIxBB-2bWBpgNSZgpzqbWZoBr4F0RC0-Mrc0sySg0EVsjnPwEg_Sy85LztTryq9skoPrkAP2PsxA12SjHR4P7iWcRNk4Ic2DxUcIc4SYmBKzRNm4EY6NFCEIfHp_F1PdvU979z5dF_js4blL1qaXjStetm64-mknudTZjzbtPPJjs6Xreuf9bQ_W9D-fFYLUORFz7bnG_cCGc_6dj3Zs0rh6bpZQJ0vO7c87Vj9bMXCp_O6n67f-Wz9lKcdbc_mTRBl8HRzDXH20AW5ML4Ach5FPOiEaLAAMNzioeEWTyjcjMUYWPLy81IlGBSMkpJT00xTE4EBBuxcGJgmJicmGSWamySbGSRapBoYSzI4UW6fFDUMkWbgAl33DhkCkWFgKSkqTZUFNgpKkuTA8Q8A5LbYyw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E6%80%A7%E8%84%82%E8%82%AA%E9%85%B8%E5%92%8C%E7%94%98%E6%B2%B9%E4%B8%89%E9%85%AF%E6%8C%87%E6%A0%87%E7%9A%84%E6%B2%B9%E8%8C%B6%E7%B1%BD%E6%B2%B9%E6%8E%BA%E4%BC%AA+%E5%AE%9A%E6%80%A7%E9%89%B4%E5%88%AB%E6%A8%A1%E5%9E%8B%E5%AF%B9%E6%AF%94%E5%88%86%E6%9E%90&rft.jtitle=Zhongguo+you+zhi&rft.au=%E5%AD%99%E5%A9%B7%E5%A9%B71%2C2%EF%BC%8C%E5%88%98%E5%89%91%E6%B3%A23%EF%BC%8C%E4%BB%BB%E4%BD%B3%E4%B8%BD1%2C2%EF%BC%8C%E9%92%9F%E6%B5%B7%E9%9B%811%2C2%EF%BC%8C%E5%91%A8%E6%B3%A21%2C2SUN+Tingting1%2C2%2C+LIU+Jianbo3%2C+REN+Jiali1%2C2%2C+ZHONG+Haiyan1%2C2%2C+ZHOU+Bo1%2C2&rft.date=2023-01-01&rft.pub=%E4%B8%AD%E7%B2%AE%E5%B7%A5%E7%A7%91%EF%BC%88%E8%A5%BF%E5%AE%89%EF%BC%89%E5%9B%BD%E9%99%85%E5%B7%A5%E7%A8%8B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8&rft.issn=1003-7969&rft.volume=48&rft.issue=1&rft.spage=66&rft.epage=73&rft_id=info:doi/10.19902%2Fj.cnki.zgyz.1003-7969.210653&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3797f5a86c7b4e0984cc96ca62a38116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1003-7969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1003-7969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1003-7969&client=summon