Review: Towards the next-generation models of the rumen microbiome for enhancing predictive power and guiding sustainable production strategies

The rumen ecosystem harbours a galaxy of microbes working in syntrophy to carry out a metabolic cascade of hydrolytic and fermentative reactions. This fermentation process allows ruminants to harvest nutrients from a wide range of feedstuff otherwise inaccessible to the host. The interconnection bet...

Full description

Saved in:
Bibliographic Details
Published inAnimal (Cambridge, England) Vol. 17; p. 100984
Main Authors R. Muñoz-Tamayo, M. Davoudkhani, I. Fakih, C.E. Robles-Rodriguez, F. Rubino, C.J. Creevey, E. Forano
Format Journal Article
LanguageEnglish
Published Elsevier 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rumen ecosystem harbours a galaxy of microbes working in syntrophy to carry out a metabolic cascade of hydrolytic and fermentative reactions. This fermentation process allows ruminants to harvest nutrients from a wide range of feedstuff otherwise inaccessible to the host. The interconnection between the ruminant and its rumen microbiota shapes key animal phenotypes such as feed efficiency and methane emissions and suggests the potential of reducing methane emissions and enhancing feed conversion into animal products by manipulating the rumen microbiota. Whilst significant technological progress in omics techniques has increased our knowledge of the rumen microbiota and its genome (microbiome), translating omics knowledge into effective microbial manipulation strategies remains a great challenge. This challenge can be addressed by modelling approaches integrating causality principles and thus going beyond current correlation-based approaches applied to analyse rumen microbial genomic data. However, existing rumen models are not yet adapted to capitalise on microbial genomic information. This gap between the rumen microbiota available omics data and the way microbial metabolism is represented in the existing rumen models needs to be filled to enhance rumen understanding and produce better predictive models with capabilities for guiding nutritional strategies. To fill this gap, the integration of computational biology tools and mathematical modelling frameworks is needed to translate the information of the metabolic potential of the rumen microbes (inferred from their genomes) into a mathematical object. In this paper, we aim to discuss the potential use of two modelling approaches for the integration of microbial genomic information into dynamic models. The first modelling approach explores the theory of state observers to integrate microbial time series data into rumen fermentation models. The second approach is based on the genome-scale network reconstructions of rumen microbes. For a given microorganism, the network reconstruction produces a stoichiometry matrix of the metabolism. This matrix is the core of the so-called genome-scale metabolic models which can be exploited by a plethora of methods comprised within the constraint-based reconstruction and analysis approaches. We will discuss how these methods can be used to produce the next-generation models of the rumen microbiome.
AbstractList The rumen ecosystem harbours a galaxy of microbes working in syntrophy to carry out a metabolic cascade of hydrolytic and fermentative reactions. This fermentation process allows ruminants to harvest nutrients from a wide range of feedstuff otherwise inaccessible to the host. The interconnection between the ruminant and its rumen microbiota shapes key animal phenotypes such as feed efficiency and methane emissions and suggests the potential of reducing methane emissions and enhancing feed conversion into animal products by manipulating the rumen microbiota. Whilst significant technological progress in omics techniques has increased our knowledge of the rumen microbiota and its genome (microbiome), translating omics knowledge into effective microbial manipulation strategies remains a great challenge. This challenge can be addressed by modelling approaches integrating causality principles and thus going beyond current correlation-based approaches applied to analyse rumen microbial genomic data. However, existing rumen models are not yet adapted to capitalise on microbial genomic information. This gap between the rumen microbiota available omics data and the way microbial metabolism is represented in the existing rumen models needs to be filled to enhance rumen understanding and produce better predictive models with capabilities for guiding nutritional strategies. To fill this gap, the integration of computational biology tools and mathematical modelling frameworks is needed to translate the information of the metabolic potential of the rumen microbes (inferred from their genomes) into a mathematical object. In this paper, we aim to discuss the potential use of two modelling approaches for the integration of microbial genomic information into dynamic models. The first modelling approach explores the theory of state observers to integrate microbial time series data into rumen fermentation models. The second approach is based on the genome-scale network reconstructions of rumen microbes. For a given microorganism, the network reconstruction produces a stoichiometry matrix of the metabolism. This matrix is the core of the so-called genome-scale metabolic models which can be exploited by a plethora of methods comprised within the constraint-based reconstruction and analysis approaches. We will discuss how these methods can be used to produce the next-generation models of the rumen microbiome.
Author C.J. Creevey
M. Davoudkhani
I. Fakih
F. Rubino
E. Forano
R. Muñoz-Tamayo
C.E. Robles-Rodriguez
Author_xml – sequence: 1
  fullname: R. Muñoz-Tamayo
  organization: Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France; Corresponding author
– sequence: 2
  fullname: M. Davoudkhani
  organization: Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
– sequence: 3
  fullname: I. Fakih
  organization: Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France; Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
– sequence: 4
  fullname: C.E. Robles-Rodriguez
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
– sequence: 5
  fullname: F. Rubino
  organization: Institute of Global Food Security, School of Biological Sciences, Queen’s University Belfast, BT9 5DL Northern Ireland, UK
– sequence: 6
  fullname: C.J. Creevey
  organization: Institute of Global Food Security, School of Biological Sciences, Queen’s University Belfast, BT9 5DL Northern Ireland, UK
– sequence: 7
  fullname: E. Forano
  organization: Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
BookMark eNqtjUFOwzAQRb0oEi1wh7lApFhxGsIWgWCLuo8ce5JOlXiisdPAKbgyIeIIrL70nvTfQe0CB9ypva5KnVWF1rfqEOMlz8taG7NX3x94JVye4MSLFR8hnRECfqasx4BiE3GAkT0OEbjbrMwjroyccEs8InQsgOFsg6PQwyToySW6Iky8oIANHvqZ_K-Mc0yWgm2H1Qr72W2BmNYS9oTxXt10doj48Ld36v315fT8lnm2l2YSGq18NWyp2QBL31hJ5AZstKnz1mFdVr4waIpHjVi3x7arvSm1d8V_fv0Ai5lzmA
ContentType Journal Article
DBID DOA
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID oai_doaj_org_article_1490bce957d34e4381ee9b6bf9d451dc
GroupedDBID ---
-E.
.FH
0E1
0R~
0SF
23M
4.4
5GY
5VS
74X
74Y
7X7
7~V
8CJ
8FE
8FH
8R4
8R5
AAAZR
AACJH
AAEDW
AAFWJ
AAGFV
AAHBH
AAKTX
AALRI
AARAB
AAXUO
ABBXD
ABFBI
ABKKG
ABKMT
ABQTM
ABROB
ABWCF
ABZCX
ACBEK
ACBMC
ACGFS
ACIMK
ACPRK
ACUIJ
ACZBM
ACZUX
ADBBV
ADFEC
ADVLN
AENEX
AEXQZ
AEYYC
AFFUJ
AFJKZ
AFKRA
AFLOS
AFLVW
AFPKN
AFRAH
AFUTZ
AHLTW
AHMBA
AISIE
AITUG
AJ7
AJPFC
AJQAS
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMRAJ
ARABE
ATUCA
AZGZS
BBLKV
BENPR
BGHMG
BMAJL
BPHCQ
BVXVI
C0O
CS3
D1J
DC4
DIK
DOHLZ
EBS
F5P
FDB
GROUPED_DOAJ
HCIFZ
HG-
HST
HZ~
I.6
IH6
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
L98
LK8
M-V
M7P
NIKVX
O9-
PQQKQ
PROAC
Q2X
RAMDC
RCA
RR0
S6-
S6U
SY4
T9M
TR2
UT1
UU6
WQ3
WYP
Y6R
~KM
ID FETCH-doaj_primary_oai_doaj_org_article_1490bce957d34e4381ee9b6bf9d451dc3
IEDL.DBID DOA
ISSN 1751-7311
IngestDate Tue Oct 22 15:10:12 EDT 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_1490bce957d34e4381ee9b6bf9d451dc3
OpenAccessLink https://doaj.org/article/1490bce957d34e4381ee9b6bf9d451dc
ParticipantIDs doaj_primary_oai_doaj_org_article_1490bce957d34e4381ee9b6bf9d451dc
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Animal (Cambridge, England)
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0059144
Score 4.708564
Snippet The rumen ecosystem harbours a galaxy of microbes working in syntrophy to carry out a metabolic cascade of hydrolytic and fermentative reactions. This...
SourceID doaj
SourceType Open Website
StartPage 100984
SubjectTerms Genome-scale metabolic model
Microbial genomics
Rumen fermentation
Rumen microbiota
Rumen modelling
Title Review: Towards the next-generation models of the rumen microbiome for enhancing predictive power and guiding sustainable production strategies
URI https://doaj.org/article/1490bce957d34e4381ee9b6bf9d451dc
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEIAt1AkGxFO8dQNrRB5OmrAVRFWQYCpSt8hOLqEDbpSkv4O_zJ2dim4MsDpSTjnF97DvvhPiNtEpt3zSRsIi8qQaa0-Rl_Z0mGIlpcoC5ETx9S2ZvcuXRbzYGvXFNWEOD-wUd0cRvK8LzOJxGUlkIBViphNdZaWMg7Kw1tfPNsmUs8FxFtgxruQbA28c8XigLSK_dR3TA7E_xHwwcbIOxQ6aI7E3qduBe4HH4sud0d_D3JaxdkBxGRjOSmvLhWb1gZ1a08Gqsk-ZekBrS0dS-kSg8BPQfDBAw9TQtHwFw8YMGp6EBsqUUK-X7Kug-2mbgsYxX1lA12_AESfiefo0f5x5_D1545AUOUOi7QKpLh9Ul_-muuhUjMzK4JkARWlFWGBayiqRfpHStpRInqsKUas0iM_Fw9_lXfzHSy7FbsgdCLbM60qM-naN1xQX9PrG_gLf40jCUg
link.rule.ids 315,783,787,2109
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review%3A+Towards+the+next-generation+models+of+the+rumen+microbiome+for+enhancing+predictive+power+and+guiding+sustainable+production+strategies&rft.jtitle=Animal+%28Cambridge%2C+England%29&rft.au=R.+Mu%C3%B1oz-Tamayo&rft.au=M.+Davoudkhani&rft.au=I.+Fakih&rft.au=C.E.+Robles-Rodriguez&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=1751-7311&rft.volume=17&rft.spage=100984&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1490bce957d34e4381ee9b6bf9d451dc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7311&client=summon