Prediction of Premature Retinopathy Fundus Images Using Dense Network Model for Intelligent Portable Screening Device

Retinopathy of Prematurity (ROP) is a serious retinal condition that affects preterm babies and, if ignored, can result in irreversible blindness. The challenges are related to variability and inconsistency among observers in diagnosing ROP, so the development of an automated system for ROP predicti...

Full description

Saved in:
Bibliographic Details
Published inJournal of wireless mobile networks, ubiquitous computing and dependable applications Vol. 15; no. 2; pp. 170 - 182
Main Authors Devi, Dr.B. Aruna, Jaganathan, Dr.S., Shah, Dr. Parag K, Venkatapathy, Dr. Narendran
Format Journal Article
LanguageEnglish
Published 29.06.2022
Online AccessGet full text

Cover

Loading…
Abstract Retinopathy of Prematurity (ROP) is a serious retinal condition that affects preterm babies and, if ignored, can result in irreversible blindness. The challenges are related to variability and inconsistency among observers in diagnosing ROP, so the development of an automated system for ROP prediction becomes imperative. While various methods have been explored for automated ROP diagnosis, dedicated models with satisfactory performance have been lacking. This study aims to address these gaps with the objective to construct a multi-channel dense Convolutional Neural Network (MCD-CNN) which is tailored for ROP prediction, suitable for large-scale infant screening. The process involves utilizing CLAHE pre-processing, image labelling, image denoising, making and image generation for retinal vessel prediction in fundus images. The multi-channel CNN uses the feature selection method to extract and choose features from pre-processed pictures. The findings show that the suggested model attains a noteworthy 97.5% accuracy, 98% sensitivity, and 98.5% specificity. Significantly, this outperforms both pre-trained models and deep learning classifiers. Overall, the study contributes to improving ROP diagnosis and fostering accessibility to healthcare, particularly in remote areas.
AbstractList Retinopathy of Prematurity (ROP) is a serious retinal condition that affects preterm babies and, if ignored, can result in irreversible blindness. The challenges are related to variability and inconsistency among observers in diagnosing ROP, so the development of an automated system for ROP prediction becomes imperative. While various methods have been explored for automated ROP diagnosis, dedicated models with satisfactory performance have been lacking. This study aims to address these gaps with the objective to construct a multi-channel dense Convolutional Neural Network (MCD-CNN) which is tailored for ROP prediction, suitable for large-scale infant screening. The process involves utilizing CLAHE pre-processing, image labelling, image denoising, making and image generation for retinal vessel prediction in fundus images. The multi-channel CNN uses the feature selection method to extract and choose features from pre-processed pictures. The findings show that the suggested model attains a noteworthy 97.5% accuracy, 98% sensitivity, and 98.5% specificity. Significantly, this outperforms both pre-trained models and deep learning classifiers. Overall, the study contributes to improving ROP diagnosis and fostering accessibility to healthcare, particularly in remote areas.
Author Venkatapathy, Dr. Narendran
Jaganathan, Dr.S.
Devi, Dr.B. Aruna
Shah, Dr. Parag K
Author_xml – sequence: 1
  givenname: Dr.B. Aruna
  surname: Devi
  fullname: Devi, Dr.B. Aruna
– sequence: 2
  givenname: Dr.S.
  surname: Jaganathan
  fullname: Jaganathan, Dr.S.
– sequence: 3
  givenname: Dr. Parag K
  surname: Shah
  fullname: Shah, Dr. Parag K
– sequence: 4
  givenname: Dr. Narendran
  surname: Venkatapathy
  fullname: Venkatapathy, Dr. Narendran
BookMark eNqdz01OwzAUBGALFYlSegFW7wIN_iuUJQIqggStgIqlZZKXYHCeK9sB9faUgjgAq5lZzOI7ZAMKhIwdC15MZ0qfntwunlcXheRSF6UsuJB7bCj5uZpM1UwO_vqZPmDjlN4450JpKTQfsn4ZsXZVdoEgNLBdnc19RHjA7CisbX7dwLynuk9QdrbFBKvkqIUrpIRwj_kzxHe4CzV6aEKEkjJ671qkDMsQs33xCI9VRKSf24er8IjtN9YnHP_miMn59dPlzaSKIaWIjVlH19m4MYKbndHsjObbaEpptkb1r9MXz8JeYw
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.58346/JOWUA.2024.I2.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-5382
EndPage 182
ExternalDocumentID 10_58346_JOWUA_2024_I2_012
GroupedDBID 5VS
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
KQ8
P2P
RNS
ID FETCH-crossref_primary_10_58346_JOWUA_2024_I2_0123
ISSN 2093-5374
IngestDate Fri Nov 22 03:09:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_58346_JOWUA_2024_I2_0123
ParticipantIDs crossref_primary_10_58346_JOWUA_2024_I2_012
PublicationCentury 2000
PublicationDate 2022-06-29
PublicationDateYYYYMMDD 2022-06-29
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-29
  day: 29
PublicationDecade 2020
PublicationTitle Journal of wireless mobile networks, ubiquitous computing and dependable applications
PublicationYear 2022
SSID ssj0001342140
Score 4.550358
Snippet Retinopathy of Prematurity (ROP) is a serious retinal condition that affects preterm babies and, if ignored, can result in irreversible blindness. The...
SourceID crossref
SourceType Aggregation Database
StartPage 170
Title Prediction of Premature Retinopathy Fundus Images Using Dense Network Model for Intelligent Portable Screening Device
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcGkPFY9WLS_5wC1Kmufu5rhQELsI2gpouUV21guoJQtRggR_ns6Mnax5VOr2EiWWM3E8X8bjyTwY285hjQxiOXYneW_ixjKYuKlQXVeFKWwnElxl0N5xdNw9OItH58l5p_NoeS3VlfTyh1fjSv6Hq9AGfMUo2Tk42xKFBjgH_sIROAzHf-LxtxJ_szQ6H1xdU5pOmLPqqphiseF7Z7_G4hzO8FpgNgftIfAF9q7o2kge4FQOjaIYTUwJ5uesHHIxxbCqkxxdc_Rtd8ZT7hV1FnMe_1ZUW0eCpHEKTZ1gUsur2xpEB4wjpyoSTWSkLsFLj7H_pLfaNTyQhGLp7XjOoKyLdhEZiQuh7f6mw4nXGosuxaVpBAW5FBczU-4PVfwSlaCZabocYzjcuDRfiTGAwN7Z77rGSkJyMvTTyE0iXezHU3Zb_6mgTyxAh5bUDnTtEqMABPqu52tL0o8oq_Lo68-zgQcDib1h6PnGCfxJIu9nC2zr9ggbLqKSEY0MaWTDMPOxSvYiZnLE4g-H3_szI2EUhzqot31JHfhFZD6_GIqlXFla0ukSe2fwwAcaq8uso4oV9tZKernK6hlq-XTCW9RyC7Vco5Zr1HJCLSfUcoNaTqjlgFpuoZY3qOUtarlG7XsW7u-d7h64zcizG51nJfv7dEUf2EIxLdRHxsew55DRuKekn8cikakI4BITJUS9KJXJJ-bMQXhtrt7r7M0MkBtsoSprtQk6aiW3iI9_AFbnmI0
link.rule.ids 314,780,784,27924,27925
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Premature+Retinopathy+Fundus+Images+Using+Dense+Network+Model+for+Intelligent+Portable+Screening+Device&rft.jtitle=Journal+of+wireless+mobile+networks%2C+ubiquitous+computing+and+dependable+applications&rft.au=Devi%2C+Dr.B.+Aruna&rft.au=Jaganathan%2C+Dr.S.&rft.au=Shah%2C+Dr.+Parag+K&rft.au=Venkatapathy%2C+Dr.+Narendran&rft.date=2022-06-29&rft.issn=2093-5374&rft.eissn=2093-5382&rft.volume=15&rft.issue=2&rft.spage=170&rft.epage=182&rft_id=info:doi/10.58346%2FJOWUA.2024.I2.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_58346_JOWUA_2024_I2_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-5374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-5374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-5374&client=summon