Innovative model for older inpatients falls predictors assessment: a prognostic cohort study Innovative model for older inpatients falls predictors assessment

Background. In-hospital falls are avoidable accidents, but continue to be a high prevalent and incident patient safety issue. The 60% of falls are caused by more than one factor. An early identification and assessment of inpatients' high risk of falling, at the beginning of hospitalization, is...

Full description

Saved in:
Bibliographic Details
Published inDissertation nursing Vol. 4; no. 2
Main Authors Godino, Lea, Mosci, Daniela, Ambrosi, Elisa, Sist, Luisa, Decaro, Roberta, Chiari, Paolo, Gazineo, Domenica
Format Journal Article
LanguageEnglish
Published 22.07.2025
Online AccessGet full text
ISSN2785-7263
2785-7263
DOI10.54103/dn/28125

Cover

Abstract Background. In-hospital falls are avoidable accidents, but continue to be a high prevalent and incident patient safety issue. The 60% of falls are caused by more than one factor. An early identification and assessment of inpatients' high risk of falling, at the beginning of hospitalization, is unclear. Objective. The study evaluates prognostic factors that predict inpatients’ falls in a consecutive cohort of subjects. Methods. A prospective multicentric prognostic cohort study was conducted between April 2015 and December 2016. The study involved 12 wards of Northern Italy. A total of 11,768 hospitalized patients, potentially at risk of falling, were included. The variables evaluated included gender, age, difficulty getting out of bed, history of falling, vertigo or dizziness, physical impairments, going to the bathroom more than two times for a nurse shift, patients with cardiovascular or neurological drug treatment and risk of falling. The Conley Scale was also assessed. Results. Multivariate regression analysis showed that female gender, difficulty getting out of bed, history of falling, dizziness or vertigo in the last three months, physical impairments, as balance and impaired gait, judgement/lack of safety awareness, cardiovascular or neurological drug treatment were associated risk factors of falling. Conclusions. This study identifies key predictors of in-hospital falls and proposes an innovative model for the early assessment of older in-patients’ fall risk. These findings can guide the development of risk assessment models and inform future research on leveraging electronic medical records to enhance fall prevention strategies. Background. Le cadute ospedaliere sono incidenti evitabili ma continuano a rappresentare una problematica rilevante e frequente per la sicurezza dei pazienti. Il 60% delle cadute è causato da più di un fattore. L’identificazione e la valutazione precoce del rischio elevato di caduta nei pazienti ricoverati, all’inizio del ricovero, rimane poco chiara. Obiettivi. Questo studio valuta i fattori prognostici che predicono le cadute nei pazienti ospedalizzati in una coorte consecutiva di soggetti. Metodi. Uno studio prospettico multicentrico di coorte è stato condotto in 12 reparti del Nord Italia tra aprile 2015 e dicembre 2016, includendo 11,768 pazienti ricoverati a rischio di caduta. Sono state analizzate variabili come sesso, età, difficoltà ad alzarsi dal letto, storia di cadute, vertigini, limitazioni fisiche, frequenza di utilizzo del bagno, trattamenti farmacologici cardiovascolari o neurologici e il punteggio della Scala di Conley. Risultati. L'analisi di regressione multivariata ha mostrato che il sesso femminile, la difficoltà ad alzarsi dal letto, una storia di cadute, vertigini o capogiri negli ultimi tre mesi, le limitazioni fisiche (ad esempio equilibrio e deambulazione compromessi), il giudizio compromesso/mancanza di consapevolezza del pericolo e l'assunzione di farmaci cardiovascolari o neurologici sono fattori di rischio associati alle cadute. Conclusioni. Questo studio identifica i principali predittori delle cadute ospedaliere e propone un modello innovativo per la valutazione precoce del rischio di caduta nei pazienti anziani ricoverati. Questi risultati possono guidare lo sviluppo di modelli di valutazione del rischio e informare future ricerche sull’utilizzo delle cartelle cliniche elettroniche per migliorare le strategie di prevenzione delle cadute.
AbstractList Background. In-hospital falls are avoidable accidents, but continue to be a high prevalent and incident patient safety issue. The 60% of falls are caused by more than one factor. An early identification and assessment of inpatients' high risk of falling, at the beginning of hospitalization, is unclear. Objective. The study evaluates prognostic factors that predict inpatients’ falls in a consecutive cohort of subjects. Methods. A prospective multicentric prognostic cohort study was conducted between April 2015 and December 2016. The study involved 12 wards of Northern Italy. A total of 11,768 hospitalized patients, potentially at risk of falling, were included. The variables evaluated included gender, age, difficulty getting out of bed, history of falling, vertigo or dizziness, physical impairments, going to the bathroom more than two times for a nurse shift, patients with cardiovascular or neurological drug treatment and risk of falling. The Conley Scale was also assessed. Results. Multivariate regression analysis showed that female gender, difficulty getting out of bed, history of falling, dizziness or vertigo in the last three months, physical impairments, as balance and impaired gait, judgement/lack of safety awareness, cardiovascular or neurological drug treatment were associated risk factors of falling. Conclusions. This study identifies key predictors of in-hospital falls and proposes an innovative model for the early assessment of older in-patients’ fall risk. These findings can guide the development of risk assessment models and inform future research on leveraging electronic medical records to enhance fall prevention strategies. Background. Le cadute ospedaliere sono incidenti evitabili ma continuano a rappresentare una problematica rilevante e frequente per la sicurezza dei pazienti. Il 60% delle cadute è causato da più di un fattore. L’identificazione e la valutazione precoce del rischio elevato di caduta nei pazienti ricoverati, all’inizio del ricovero, rimane poco chiara. Obiettivi. Questo studio valuta i fattori prognostici che predicono le cadute nei pazienti ospedalizzati in una coorte consecutiva di soggetti. Metodi. Uno studio prospettico multicentrico di coorte è stato condotto in 12 reparti del Nord Italia tra aprile 2015 e dicembre 2016, includendo 11,768 pazienti ricoverati a rischio di caduta. Sono state analizzate variabili come sesso, età, difficoltà ad alzarsi dal letto, storia di cadute, vertigini, limitazioni fisiche, frequenza di utilizzo del bagno, trattamenti farmacologici cardiovascolari o neurologici e il punteggio della Scala di Conley. Risultati. L'analisi di regressione multivariata ha mostrato che il sesso femminile, la difficoltà ad alzarsi dal letto, una storia di cadute, vertigini o capogiri negli ultimi tre mesi, le limitazioni fisiche (ad esempio equilibrio e deambulazione compromessi), il giudizio compromesso/mancanza di consapevolezza del pericolo e l'assunzione di farmaci cardiovascolari o neurologici sono fattori di rischio associati alle cadute. Conclusioni. Questo studio identifica i principali predittori delle cadute ospedaliere e propone un modello innovativo per la valutazione precoce del rischio di caduta nei pazienti anziani ricoverati. Questi risultati possono guidare lo sviluppo di modelli di valutazione del rischio e informare future ricerche sull’utilizzo delle cartelle cliniche elettroniche per migliorare le strategie di prevenzione delle cadute.
Author Ambrosi, Elisa
Gazineo, Domenica
Decaro, Roberta
Chiari, Paolo
Godino, Lea
Sist, Luisa
Mosci, Daniela
Author_xml – sequence: 1
  givenname: Lea
  orcidid: 0000-0002-3763-9372
  surname: Godino
  fullname: Godino, Lea
– sequence: 2
  givenname: Daniela
  surname: Mosci
  fullname: Mosci, Daniela
– sequence: 3
  givenname: Elisa
  surname: Ambrosi
  fullname: Ambrosi, Elisa
– sequence: 4
  givenname: Luisa
  orcidid: 0000-0002-1283-7364
  surname: Sist
  fullname: Sist, Luisa
– sequence: 5
  givenname: Roberta
  surname: Decaro
  fullname: Decaro, Roberta
– sequence: 6
  givenname: Paolo
  surname: Chiari
  fullname: Chiari, Paolo
– sequence: 7
  givenname: Domenica
  orcidid: 0000-0003-1866-3358
  surname: Gazineo
  fullname: Gazineo, Domenica
BookMark eNqVj7FuwkAQRE8RkUISivzBthSE8zkGQ4sShZ4S6XTyrZOL7F1r90Di77FQirSpZqQ3U7xHMyEmNOalsK_VW2HLZaSlqwtX3ZmpW9fVYu1W5eRPfzAz1R9rras3ZV2tpua4J-JzyOmM0HPEDloW4C6iQKJhBEhZoQ1dpzAIxtRkFoWgiqr9CLcQRsBfxJpTAw1_s2TQfIqXZ3M_HhVnv_lk5h_vh93nohFWFWz9IKkPcvGF9TcDH8nfDMr_bK_2eU-6
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.54103/dn/28125
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2785-7263
ExternalDocumentID 10_54103_dn_28125
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EIHBH
GROUPED_DOAJ
M~E
ID FETCH-crossref_primary_10_54103_dn_281253
ISSN 2785-7263
IngestDate Thu Jul 31 00:41:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_54103_dn_281253
ORCID 0000-0002-3763-9372
0000-0002-1283-7364
0000-0003-1866-3358
ParticipantIDs crossref_primary_10_54103_dn_28125
PublicationCentury 2000
PublicationDate 2025-07-22
PublicationDateYYYYMMDD 2025-07-22
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-22
  day: 22
PublicationDecade 2020
PublicationTitle Dissertation nursing
PublicationYear 2025
SSID ssj0002893856
Score 4.5952854
Snippet Background. In-hospital falls are avoidable accidents, but continue to be a high prevalent and incident patient safety issue. The 60% of falls are caused by...
SourceID crossref
SourceType Index Database
Subtitle Innovative model for older inpatients falls predictors assessment
Title Innovative model for older inpatients falls predictors assessment: a prognostic cohort study
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCDzosXUVT8HEG8yKjrsmZtvQ0_mLJ5ccIOQknbFAqzla3z4MG_3ZekTYoOnF7K-lhKy6_Ne3l5HwidO6FDIy9yrCjhoQUawrf8CL7HxI8ZD33e7TGxUBw99gbPzsOETkycrswuKcLL6GNpXsl_qIIMuIos2T-Q1RcFAfwGvnAEwnBcifF92dL0nauONjJmMBd9t1tpVlZMnbcSNp3ORTGAOFW9dZiuxqlSnUWMVpaLgs0t0S93VtSKzpZ2601t274KF9ChOznoP-lxHXI9yY9EkUyTw67l_dcQ9HJaRpTNtfwpVcknw0UlLF0RhAofJ6l5J4nrid645YzFl8jKKdepvVlk2UROnY4tKkrEQlcRMEKo0VfVHv03NaaDC2FZI4cHcRbIoetog7iu3MQffRoPHCw1u55s76vvUZWekqPbcdaWo2sGS83yGG-jrXLJgPuK_w5a49kuejHssWSPgT2W7LFhjyV7bNhjw_4KM2zIY0UeS_J76OLudnw9sKpbCt5UUZLgx1N391EjyzN-gHCHe8xl1Kc2pw6JCWN20otiOHND7treITr7_XpHq_zpGG2aF-MENYrZgp-C1VaETentaEoEX-FxTiU
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+model+for+older+inpatients+falls+predictors+assessment%3A+a+prognostic+cohort+study&rft.jtitle=Dissertation+nursing&rft.au=Godino%2C+Lea&rft.au=Mosci%2C+Daniela&rft.au=Ambrosi%2C+Elisa&rft.au=Sist%2C+Luisa&rft.date=2025-07-22&rft.issn=2785-7263&rft.eissn=2785-7263&rft.volume=4&rft.issue=2&rft_id=info:doi/10.54103%2Fdn%2F28125&rft.externalDBID=n%2Fa&rft.externalDocID=10_54103_dn_28125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2785-7263&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2785-7263&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2785-7263&client=summon