ELINA: Emotion low-resources INference algorithm based on 1D ConvNets

In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal (B-12sbj) sets from the YAAD dataset was conducted. This dataset encompassed 25 subjects exposed to audiovisual stimuli designed to induce seven dist...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems
Main Authors Cardoso-Moreno, Marco A., Luján-García, Juan Eduardo, Yáñez-Márquez, Cornelio
Format Journal Article
LanguageEnglish
Published 28.03.2024
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-219334

Cover

Abstract In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal (B-12sbj) sets from the YAAD dataset was conducted. This dataset encompassed 25 subjects exposed to audiovisual stimuli designed to induce seven distinct emotional states. Electrocardiogram (ECG) and galvanic skin response (GSR) biosignals were collected and classified using two deep learning models, BEC-1D and ELINA, along with two different preprocessing techniques, a classical fourier-based filtering and an Empirical Mode Decomposition (EMD) approach. For the single-modal set, this proposal achieved an accuracy of 84.43±30.03, precision of 85.16±28.91, and F1-score of 84.06±29.97. Moreover, in the extended configuration the model maintained strong performance, yielding scores of 80.95±22.55, 82.44±24.34, and 79.91±24.55, respectively. Notably, for the multi-modal set (B-12sbj), the best results were obtained with EMD preprocessing and the ELINA model. This proposal achieved an improved accuracy, precision, and F1-score scores of 98.02±3.78, 98.31±3.31, and 97.98±3.83, respectively, demonstrating the effectiveness of this approach in discerning emotional states from biosignals.
AbstractList In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal (B-12sbj) sets from the YAAD dataset was conducted. This dataset encompassed 25 subjects exposed to audiovisual stimuli designed to induce seven distinct emotional states. Electrocardiogram (ECG) and galvanic skin response (GSR) biosignals were collected and classified using two deep learning models, BEC-1D and ELINA, along with two different preprocessing techniques, a classical fourier-based filtering and an Empirical Mode Decomposition (EMD) approach. For the single-modal set, this proposal achieved an accuracy of 84.43±30.03, precision of 85.16±28.91, and F1-score of 84.06±29.97. Moreover, in the extended configuration the model maintained strong performance, yielding scores of 80.95±22.55, 82.44±24.34, and 79.91±24.55, respectively. Notably, for the multi-modal set (B-12sbj), the best results were obtained with EMD preprocessing and the ELINA model. This proposal achieved an improved accuracy, precision, and F1-score scores of 98.02±3.78, 98.31±3.31, and 97.98±3.83, respectively, demonstrating the effectiveness of this approach in discerning emotional states from biosignals.
Author Cardoso-Moreno, Marco A.
Yáñez-Márquez, Cornelio
Luján-García, Juan Eduardo
Author_xml – sequence: 1
  givenname: Marco A.
  surname: Cardoso-Moreno
  fullname: Cardoso-Moreno, Marco A.
  organization: Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Miguel Othón de Mendizábal, Col.Nueva Industrial Vallejo, Alcaldıa Gustavo A. Madero, C.P. 07700, CDMX
– sequence: 2
  givenname: Juan Eduardo
  surname: Luján-García
  fullname: Luján-García, Juan Eduardo
  organization: Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Miguel Othón de Mendizábal, Col.Nueva Industrial Vallejo, Alcaldıa Gustavo A. Madero, C.P. 07700, CDMX, Biomedical Informatics Group (GIB), Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, Madrid, Spain
– sequence: 3
  givenname: Cornelio
  surname: Yáñez-Márquez
  fullname: Yáñez-Márquez, Cornelio
  organization: Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Miguel Othón de Mendizábal, Col.Nueva Industrial Vallejo, Alcaldıa Gustavo A. Madero, C.P. 07700, CDMX
BookMark eNqVzs0OwUAYheGJkKiflRuYvQwznWqxEyoq0g37SdVXKu2MzFfE3atwA1bnLN7F0yFNbTQQMhB8JF0px9tovWeumEnpNYgjpsGETWd-0Kw_9z0mXM9vkw7ilXMRTFzukDDcRfFiTsPSVLnRtDBPZgHN3aaANIozsKBToElxNjavLiU9JggnWqdiRZdGP2KosEdaWVIg9H_bJcN1eFhuWGoNooVM3WxeJvalBFcfqfpI1Vcq_6vf965FJg
Cites_doi 10.1109/TAFFC.2016.2625250
10.3390/s140611031
10.17977/um018v4i22021p145-152
10.7202/014718ar
10.3390/s20030592
10.1016/j.imu.2020.100363
10.3390/s21123961
10.21105/joss.02977
10.1109/CSPA.2011.5759912
10.1007/978-3-319-24574-4_28
10.3390/s20123510
10.20965/jaciii.2023.p0967
10.1038/s41598-019-42826-2
10.1109/ACCESS.2019.2891579
10.3390/electronics12132795
10.1016/j.ymssp.2020.107398
10.1109/REEDCON57544.2023.10151406
10.1098/rspa.1998.0193
10.3233/THC-174747
10.1016/j.bspc.2019.101646
10.1109/TAFFC.2018.2884461
10.3390/s21155015
10.3390/s19204495
10.1016/j.bspc.2022.104456
10.1016/j.entcs.2019.04.009
10.3390/app11114945
10.1007/978-3-031-47640-2_16
10.1109/5.726791
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3233/JIFS-219334
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
ExternalDocumentID 10_3233_JIFS_219334
GroupedDBID .4S
.DC
4.4
5GY
8VB
AAGLT
AAYXX
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
CITATION
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
ID FETCH-crossref_primary_10_3233_JIFS_2193343
ISSN 1064-1246
IngestDate Tue Aug 05 12:03:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_3233_JIFS_2193343
ParticipantIDs crossref_primary_10_3233_JIFS_219334
PublicationCentury 2000
PublicationDate 2024-03-28
PublicationDateYYYYMMDD 2024-03-28
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-28
  day: 28
PublicationDecade 2020
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2024
References e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_21_2
Goshvarpour A. (e_1_3_2_23_2) 2017; 5
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
Krizhevsky A. (e_1_3_2_29_2) 2012; 25
Virtanen P. (e_1_3_2_39_2); 17
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
Dar M.N. (e_1_3_2_11_2) 2022
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Shahid H. (e_1_3_2_26_2) 2020
Das P. (e_1_3_2_22_2) 2016
Ghali A. (e_1_3_2_9_2) 2018; 96
References_xml – ident: e_1_3_2_14_2
  doi: 10.1109/TAFFC.2016.2625250
– ident: e_1_3_2_24_2
  doi: 10.3390/s140611031
– ident: e_1_3_2_35_2
  doi: 10.17977/um018v4i22021p145-152
– ident: e_1_3_2_6_2
  doi: 10.7202/014718ar
– ident: e_1_3_2_8_2
  doi: 10.3390/s20030592
– ident: e_1_3_2_5_2
  doi: 10.1016/j.imu.2020.100363
– ident: e_1_3_2_33_2
  doi: 10.3390/s21123961
– ident: e_1_3_2_38_2
  doi: 10.21105/joss.02977
– ident: e_1_3_2_3_2
  doi: 10.1109/CSPA.2011.5759912
– ident: e_1_3_2_30_2
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_3_2_4_2
  doi: 10.3390/s20123510
– ident: e_1_3_2_31_2
– start-page: 1
  year: 2022
  ident: e_1_3_2_11_2
  article-title: Yaad:Young adult’s affective data using wearable ecg and gsr sensors, in
  publication-title: 2022 2nd International Conference on Digital Futures andTransformative Technologies (ICoDT2)
– ident: e_1_3_2_28_2
  doi: 10.20965/jaciii.2023.p0967
– ident: e_1_3_2_17_2
  doi: 10.1038/s41598-019-42826-2
– ident: e_1_3_2_7_2
– ident: e_1_3_2_15_2
  doi: 10.1109/ACCESS.2019.2891579
– ident: e_1_3_2_21_2
  doi: 10.3390/electronics12132795
– volume: 5
  start-page: 211
  issue: 2
  year: 2017
  ident: e_1_3_2_23_2
  article-title: An emotion recognition approach basedon wavelet transform and second-order difference plot of ecg
  publication-title: Journal of AI and Data Mining
– ident: e_1_3_2_32_2
  doi: 10.1016/j.ymssp.2020.107398
– ident: e_1_3_2_27_2
  doi: 10.1109/REEDCON57544.2023.10151406
– volume: 96
  start-page: 6117
  issue: 18
  year: 2018
  ident: e_1_3_2_9_2
  article-title: Emotion recognition using facialexpression analysis
  publication-title: Journal of Theoretical and AppliedInformation Technology
– ident: e_1_3_2_10_2
  doi: 10.1098/rspa.1998.0193
– ident: e_1_3_2_18_2
  doi: 10.3233/THC-174747
– ident: e_1_3_2_25_2
  doi: 10.1016/j.bspc.2019.101646
– volume: 25
  year: 2012
  ident: e_1_3_2_29_2
  article-title: Imagenet classificationwith deep convolutional neural networks
  publication-title: Advances in NeuralInformation Processing Systems
– start-page: 37
  year: 2016
  ident: e_1_3_2_22_2
  article-title: Emotion recognitionemploying ecg and gsr signals as markers of ans, in
  publication-title: 2016Conference on Advances in Signal Processing (CASP)
– ident: e_1_3_2_12_2
  doi: 10.1109/TAFFC.2018.2884461
– ident: e_1_3_2_2_2
  doi: 10.3390/s21155015
– ident: e_1_3_2_20_2
  doi: 10.3390/s19204495
– ident: e_1_3_2_34_2
  doi: 10.1016/j.bspc.2022.104456
– ident: e_1_3_2_16_2
  doi: 10.1016/j.entcs.2019.04.009
– start-page: 1
  year: 2020
  ident: e_1_3_2_26_2
  article-title: Naqvi,Emotion recognition system featuring a fusion of electrocardiogramand photoplethysmogram features, in
  publication-title: 2020 14th InternationalConference on Open Source Systems and Technologies (ICOSST)
– volume: 17
  start-page: 261
  issue: 2020
  ident: e_1_3_2_39_2
  article-title: SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms forScientific Computing in Python
  publication-title: Nature Methods
– ident: e_1_3_2_19_2
  doi: 10.3390/app11114945
– ident: e_1_3_2_37_2
  doi: 10.1007/978-3-031-47640-2_16
– ident: e_1_3_2_13_2
– ident: e_1_3_2_36_2
  doi: 10.1109/5.726791
SSID ssj0017520
Score 4.650808
Snippet In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal...
SourceID crossref
SourceType Index Database
Title ELINA: Emotion low-resources INference algorithm based on 1D ConvNets
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXPRgfMZ39sCtWaQFWvHGowhEuIgJN9LHohjsmlI08uudfbAUwgG9bNplty2dLzOzszNfEcoVAgqGzLNJxfNhgeIXHOI5sOahvuOFNh35VNRxd3t266XUGZQHy4C-qC5J_Hww31hX8h-pQh_IlVfJ_kGy-qLQAccgX2hBwtBuJWP3qd0TAXJXfozHmLBvEquA_NRo9xYkst7klcXj5O3D4FYr5DsEZoNX-331qKRy2uCgjjVbZyIAMprN5z-K-ll74nVAGJsy0mVwJ6aqfwJmVPM61Wf2LnbjzYg8wk_iuCEzdGegXNyQg5Rp7SPH8rZm0jnpyvMYzJcIdddZHNGJTB5bRCusEk_XstIKFlwgAj6For-WfbBmIvcV-VmOdZVetHjIudlpN58JaNeiCn2uEGevGTSdZggLHD59yCcP5eRdlLUch2_oZ6u1Rq2pd5ycsiWZK9TzyVpOPv0ude-U95JyQ_qH6ECJB1clGI7QDo2O0X6KVfIEuQIWD1iBAq-AAmtQYA0KLECBYajZwAtQnCKj6fbrLbJ4kuGnJCYZbvi_xTOUiVhEzxE2ywENLHB4K2G5ZPk22MGwaIUlymuj7YpzgXLbXPFyu2FXaG8p_2uUSeIZvQH_LfFv1av_BXOLQ7U
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ELINA%3A+Emotion+low-resources+INference+algorithm+based+on+1D+ConvNets&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Cardoso-Moreno%2C+Marco+A.&rft.au=Luj%C3%A1n-Garc%C3%ADa%2C+Juan+Eduardo&rft.au=Y%C3%A1%C3%B1ez-M%C3%A1rquez%2C+Cornelio&rft.date=2024-03-28&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233%2FJIFS-219334&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_JIFS_219334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon