ELINA: Emotion low-resources INference algorithm based on 1D ConvNets
In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal (B-12sbj) sets from the YAAD dataset was conducted. This dataset encompassed 25 subjects exposed to audiovisual stimuli designed to induce seven dist...
Saved in:
Published in | Journal of intelligent & fuzzy systems |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
28.03.2024
|
Online Access | Get full text |
ISSN | 1064-1246 1875-8967 |
DOI | 10.3233/JIFS-219334 |
Cover
Abstract | In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal (B-12sbj) sets from the YAAD dataset was conducted. This dataset encompassed 25 subjects exposed to audiovisual stimuli designed to induce seven distinct emotional states. Electrocardiogram (ECG) and galvanic skin response (GSR) biosignals were collected and classified using two deep learning models, BEC-1D and ELINA, along with two different preprocessing techniques, a classical fourier-based filtering and an Empirical Mode Decomposition (EMD) approach. For the single-modal set, this proposal achieved an accuracy of 84.43±30.03, precision of 85.16±28.91, and F1-score of 84.06±29.97. Moreover, in the extended configuration the model maintained strong performance, yielding scores of 80.95±22.55, 82.44±24.34, and 79.91±24.55, respectively. Notably, for the multi-modal set (B-12sbj), the best results were obtained with EMD preprocessing and the ELINA model. This proposal achieved an improved accuracy, precision, and F1-score scores of 98.02±3.78, 98.31±3.31, and 97.98±3.83, respectively, demonstrating the effectiveness of this approach in discerning emotional states from biosignals. |
---|---|
AbstractList | In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal (B-12sbj) sets from the YAAD dataset was conducted. This dataset encompassed 25 subjects exposed to audiovisual stimuli designed to induce seven distinct emotional states. Electrocardiogram (ECG) and galvanic skin response (GSR) biosignals were collected and classified using two deep learning models, BEC-1D and ELINA, along with two different preprocessing techniques, a classical fourier-based filtering and an Empirical Mode Decomposition (EMD) approach. For the single-modal set, this proposal achieved an accuracy of 84.43±30.03, precision of 85.16±28.91, and F1-score of 84.06±29.97. Moreover, in the extended configuration the model maintained strong performance, yielding scores of 80.95±22.55, 82.44±24.34, and 79.91±24.55, respectively. Notably, for the multi-modal set (B-12sbj), the best results were obtained with EMD preprocessing and the ELINA model. This proposal achieved an improved accuracy, precision, and F1-score scores of 98.02±3.78, 98.31±3.31, and 97.98±3.83, respectively, demonstrating the effectiveness of this approach in discerning emotional states from biosignals. |
Author | Cardoso-Moreno, Marco A. Yáñez-Márquez, Cornelio Luján-García, Juan Eduardo |
Author_xml | – sequence: 1 givenname: Marco A. surname: Cardoso-Moreno fullname: Cardoso-Moreno, Marco A. organization: Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Miguel Othón de Mendizábal, Col.Nueva Industrial Vallejo, Alcaldıa Gustavo A. Madero, C.P. 07700, CDMX – sequence: 2 givenname: Juan Eduardo surname: Luján-García fullname: Luján-García, Juan Eduardo organization: Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Miguel Othón de Mendizábal, Col.Nueva Industrial Vallejo, Alcaldıa Gustavo A. Madero, C.P. 07700, CDMX, Biomedical Informatics Group (GIB), Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, Madrid, Spain – sequence: 3 givenname: Cornelio surname: Yáñez-Márquez fullname: Yáñez-Márquez, Cornelio organization: Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Miguel Othón de Mendizábal, Col.Nueva Industrial Vallejo, Alcaldıa Gustavo A. Madero, C.P. 07700, CDMX |
BookMark | eNqVzs0OwUAYheGJkKiflRuYvQwznWqxEyoq0g37SdVXKu2MzFfE3atwA1bnLN7F0yFNbTQQMhB8JF0px9tovWeumEnpNYgjpsGETWd-0Kw_9z0mXM9vkw7ilXMRTFzukDDcRfFiTsPSVLnRtDBPZgHN3aaANIozsKBToElxNjavLiU9JggnWqdiRZdGP2KosEdaWVIg9H_bJcN1eFhuWGoNooVM3WxeJvalBFcfqfpI1Vcq_6vf965FJg |
Cites_doi | 10.1109/TAFFC.2016.2625250 10.3390/s140611031 10.17977/um018v4i22021p145-152 10.7202/014718ar 10.3390/s20030592 10.1016/j.imu.2020.100363 10.3390/s21123961 10.21105/joss.02977 10.1109/CSPA.2011.5759912 10.1007/978-3-319-24574-4_28 10.3390/s20123510 10.20965/jaciii.2023.p0967 10.1038/s41598-019-42826-2 10.1109/ACCESS.2019.2891579 10.3390/electronics12132795 10.1016/j.ymssp.2020.107398 10.1109/REEDCON57544.2023.10151406 10.1098/rspa.1998.0193 10.3233/THC-174747 10.1016/j.bspc.2019.101646 10.1109/TAFFC.2018.2884461 10.3390/s21155015 10.3390/s19204495 10.1016/j.bspc.2022.104456 10.1016/j.entcs.2019.04.009 10.3390/app11114945 10.1007/978-3-031-47640-2_16 10.1109/5.726791 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.3233/JIFS-219334 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1875-8967 |
ExternalDocumentID | 10_3233_JIFS_219334 |
GroupedDBID | .4S .DC 4.4 5GY 8VB AAGLT AAYXX ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF CITATION DU5 EAD EAP EBA EBR EBS EBU EDO EMK EPL EST ESX HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 |
ID | FETCH-crossref_primary_10_3233_JIFS_2193343 |
ISSN | 1064-1246 |
IngestDate | Tue Aug 05 12:03:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_3233_JIFS_2193343 |
ParticipantIDs | crossref_primary_10_3233_JIFS_219334 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-28 |
PublicationDateYYYYMMDD | 2024-03-28 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Journal of intelligent & fuzzy systems |
PublicationYear | 2024 |
References | e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_21_2 Goshvarpour A. (e_1_3_2_23_2) 2017; 5 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 Krizhevsky A. (e_1_3_2_29_2) 2012; 25 Virtanen P. (e_1_3_2_39_2); 17 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 Dar M.N. (e_1_3_2_11_2) 2022 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Shahid H. (e_1_3_2_26_2) 2020 Das P. (e_1_3_2_22_2) 2016 Ghali A. (e_1_3_2_9_2) 2018; 96 |
References_xml | – ident: e_1_3_2_14_2 doi: 10.1109/TAFFC.2016.2625250 – ident: e_1_3_2_24_2 doi: 10.3390/s140611031 – ident: e_1_3_2_35_2 doi: 10.17977/um018v4i22021p145-152 – ident: e_1_3_2_6_2 doi: 10.7202/014718ar – ident: e_1_3_2_8_2 doi: 10.3390/s20030592 – ident: e_1_3_2_5_2 doi: 10.1016/j.imu.2020.100363 – ident: e_1_3_2_33_2 doi: 10.3390/s21123961 – ident: e_1_3_2_38_2 doi: 10.21105/joss.02977 – ident: e_1_3_2_3_2 doi: 10.1109/CSPA.2011.5759912 – ident: e_1_3_2_30_2 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_3_2_4_2 doi: 10.3390/s20123510 – ident: e_1_3_2_31_2 – start-page: 1 year: 2022 ident: e_1_3_2_11_2 article-title: Yaad:Young adult’s affective data using wearable ecg and gsr sensors, in publication-title: 2022 2nd International Conference on Digital Futures andTransformative Technologies (ICoDT2) – ident: e_1_3_2_28_2 doi: 10.20965/jaciii.2023.p0967 – ident: e_1_3_2_17_2 doi: 10.1038/s41598-019-42826-2 – ident: e_1_3_2_7_2 – ident: e_1_3_2_15_2 doi: 10.1109/ACCESS.2019.2891579 – ident: e_1_3_2_21_2 doi: 10.3390/electronics12132795 – volume: 5 start-page: 211 issue: 2 year: 2017 ident: e_1_3_2_23_2 article-title: An emotion recognition approach basedon wavelet transform and second-order difference plot of ecg publication-title: Journal of AI and Data Mining – ident: e_1_3_2_32_2 doi: 10.1016/j.ymssp.2020.107398 – ident: e_1_3_2_27_2 doi: 10.1109/REEDCON57544.2023.10151406 – volume: 96 start-page: 6117 issue: 18 year: 2018 ident: e_1_3_2_9_2 article-title: Emotion recognition using facialexpression analysis publication-title: Journal of Theoretical and AppliedInformation Technology – ident: e_1_3_2_10_2 doi: 10.1098/rspa.1998.0193 – ident: e_1_3_2_18_2 doi: 10.3233/THC-174747 – ident: e_1_3_2_25_2 doi: 10.1016/j.bspc.2019.101646 – volume: 25 year: 2012 ident: e_1_3_2_29_2 article-title: Imagenet classificationwith deep convolutional neural networks publication-title: Advances in NeuralInformation Processing Systems – start-page: 37 year: 2016 ident: e_1_3_2_22_2 article-title: Emotion recognitionemploying ecg and gsr signals as markers of ans, in publication-title: 2016Conference on Advances in Signal Processing (CASP) – ident: e_1_3_2_12_2 doi: 10.1109/TAFFC.2018.2884461 – ident: e_1_3_2_2_2 doi: 10.3390/s21155015 – ident: e_1_3_2_20_2 doi: 10.3390/s19204495 – ident: e_1_3_2_34_2 doi: 10.1016/j.bspc.2022.104456 – ident: e_1_3_2_16_2 doi: 10.1016/j.entcs.2019.04.009 – start-page: 1 year: 2020 ident: e_1_3_2_26_2 article-title: Naqvi,Emotion recognition system featuring a fusion of electrocardiogramand photoplethysmogram features, in publication-title: 2020 14th InternationalConference on Open Source Systems and Technologies (ICOSST) – volume: 17 start-page: 261 issue: 2020 ident: e_1_3_2_39_2 article-title: SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms forScientific Computing in Python publication-title: Nature Methods – ident: e_1_3_2_19_2 doi: 10.3390/app11114945 – ident: e_1_3_2_37_2 doi: 10.1007/978-3-031-47640-2_16 – ident: e_1_3_2_13_2 – ident: e_1_3_2_36_2 doi: 10.1109/5.726791 |
SSID | ssj0017520 |
Score | 4.650808 |
Snippet | In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal... |
SourceID | crossref |
SourceType | Index Database |
Title | ELINA: Emotion low-resources INference algorithm based on 1D ConvNets |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXPRgfMZ39sCtWaQFWvHGowhEuIgJN9LHohjsmlI08uudfbAUwgG9bNplty2dLzOzszNfEcoVAgqGzLNJxfNhgeIXHOI5sOahvuOFNh35VNRxd3t266XUGZQHy4C-qC5J_Hww31hX8h-pQh_IlVfJ_kGy-qLQAccgX2hBwtBuJWP3qd0TAXJXfozHmLBvEquA_NRo9xYkst7klcXj5O3D4FYr5DsEZoNX-331qKRy2uCgjjVbZyIAMprN5z-K-ll74nVAGJsy0mVwJ6aqfwJmVPM61Wf2LnbjzYg8wk_iuCEzdGegXNyQg5Rp7SPH8rZm0jnpyvMYzJcIdddZHNGJTB5bRCusEk_XstIKFlwgAj6For-WfbBmIvcV-VmOdZVetHjIudlpN58JaNeiCn2uEGevGTSdZggLHD59yCcP5eRdlLUch2_oZ6u1Rq2pd5ycsiWZK9TzyVpOPv0ude-U95JyQ_qH6ECJB1clGI7QDo2O0X6KVfIEuQIWD1iBAq-AAmtQYA0KLECBYajZwAtQnCKj6fbrLbJ4kuGnJCYZbvi_xTOUiVhEzxE2ywENLHB4K2G5ZPk22MGwaIUlymuj7YpzgXLbXPFyu2FXaG8p_2uUSeIZvQH_LfFv1av_BXOLQ7U |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ELINA%3A+Emotion+low-resources+INference+algorithm+based+on+1D+ConvNets&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Cardoso-Moreno%2C+Marco+A.&rft.au=Luj%C3%A1n-Garc%C3%ADa%2C+Juan+Eduardo&rft.au=Y%C3%A1%C3%B1ez-M%C3%A1rquez%2C+Cornelio&rft.date=2024-03-28&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233%2FJIFS-219334&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_JIFS_219334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |