Exploring Discharge Product Distribution in Li-O 2 Batteries

Li-air batteries are a post-Li-ion battery technology which promises extremely high energy densities. Many technological problems must be overcome before they are commercially viable, one of which is limited capacity at high discharge rates. One of the main reasons for this is the slow mass transpor...

Full description

Saved in:
Bibliographic Details
Published inMeeting abstracts (Electrochemical Society) Vol. MA2025-01; no. 62; p. 2938
Main Authors Brazel, Laurence, De Volder, Michael F. L., Grey, Clare P., Temprano, Israel
Format Journal Article
LanguageEnglish
Published 11.07.2025
Online AccessGet full text

Cover

Loading…
Abstract Li-air batteries are a post-Li-ion battery technology which promises extremely high energy densities. Many technological problems must be overcome before they are commercially viable, one of which is limited capacity at high discharge rates. One of the main reasons for this is the slow mass transport of O 2 through the air electrode, resulting in uneven discharge product distribution and low overall utilisation of the air electrode. We have developed novel methodologies to characterise the discharge product distribution throughout the air electrode using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and X-ray micro-computed tomography (microCT). Using this methodology, we have characterised the discharge product distribution in Li-air battery air electrodes discharged in a variety of conditions, exploring different discharge rates and electrolyte solvents. The findings suggests the distribution is dependent on a combination of O 2 mass transport and Li 2 O 2 nucleation and growth kinetics. We have developed a continuum model of the Li-air battery air electrode which more accurately captures the Li 2 O 2 morphology, and the distribution of Li 2 O 2 in this simulated electrode matches more closely with our experimentally observed results, when compared to existing models. These results can be used to inform on ideal electrolyte properties to maximise the capacity of Li-air batteries at different discharge conditions by tuning the O 2 mass transport properties and Li 2 O 2 nucleation and growth kinetics. Additionally, air electrode design can be optimised to ensure full utilisation of electrode and maximisation of the specific capacity of the battery. Figure 1
AbstractList Li-air batteries are a post-Li-ion battery technology which promises extremely high energy densities. Many technological problems must be overcome before they are commercially viable, one of which is limited capacity at high discharge rates. One of the main reasons for this is the slow mass transport of O 2 through the air electrode, resulting in uneven discharge product distribution and low overall utilisation of the air electrode. We have developed novel methodologies to characterise the discharge product distribution throughout the air electrode using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and X-ray micro-computed tomography (microCT). Using this methodology, we have characterised the discharge product distribution in Li-air battery air electrodes discharged in a variety of conditions, exploring different discharge rates and electrolyte solvents. The findings suggests the distribution is dependent on a combination of O 2 mass transport and Li 2 O 2 nucleation and growth kinetics. We have developed a continuum model of the Li-air battery air electrode which more accurately captures the Li 2 O 2 morphology, and the distribution of Li 2 O 2 in this simulated electrode matches more closely with our experimentally observed results, when compared to existing models. These results can be used to inform on ideal electrolyte properties to maximise the capacity of Li-air batteries at different discharge conditions by tuning the O 2 mass transport properties and Li 2 O 2 nucleation and growth kinetics. Additionally, air electrode design can be optimised to ensure full utilisation of electrode and maximisation of the specific capacity of the battery. Figure 1
Author Grey, Clare P.
De Volder, Michael F. L.
Temprano, Israel
Brazel, Laurence
Author_xml – sequence: 1
  givenname: Laurence
  orcidid: 0000-0002-6408-2928
  surname: Brazel
  fullname: Brazel, Laurence
– sequence: 2
  givenname: Michael F. L.
  surname: De Volder
  fullname: De Volder, Michael F. L.
– sequence: 3
  givenname: Clare P.
  orcidid: 0000-0001-5572-192X
  surname: Grey
  fullname: Grey, Clare P.
– sequence: 4
  givenname: Israel
  orcidid: 0000-0001-5610-8908
  surname: Temprano
  fullname: Temprano, Israel
BookMark eNqdzssKwjAUBNAgCj4_QcgPVJObViq48VFxoejCfUhrrBGbyE0E_XsRRXDraoaBgdMmdeusJqTP2YDzeDzcTIFBEjE-AhiLtAqlyn2NtIAnPAImkvq3x6JJ2t6fGRNpCtAik-x-vTg0tqQL44uTwlLTHbrDrQivJaDJb8E4S42laxNtKdCZCkGj0b5LGkd18br3yQ5Jltl-vooKdN6jPsormkrhQ3ImX1T5pspfqvj39wQejEuw
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1149/MA2025-01622938mtgabs
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2151-2035
EndPage 2938
ExternalDocumentID 10_1149_MA2025_01622938mtgabs
GroupedDBID 5VS
AAYXX
ACHIP
ADBBV
ADEQX
ALMA_UNASSIGNED_HOLDINGS
BTFSW
CITATION
CJUJL
EBS
HH5
IOP
JGOPE
KOT
N5L
O3W
OK1
REC
ID FETCH-crossref_primary_10_1149_MA2025_01622938mtgabs3
ISSN 2151-2043
IngestDate Thu Jul 24 02:01:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 62
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1149_MA2025_01622938mtgabs3
ORCID 0000-0002-6408-2928
0000-0001-5572-192X
0000-0001-5610-8908
ParticipantIDs crossref_primary_10_1149_MA2025_01622938mtgabs
PublicationCentury 2000
PublicationDate 2025-07-11
PublicationDateYYYYMMDD 2025-07-11
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-11
  day: 11
PublicationDecade 2020
PublicationTitle Meeting abstracts (Electrochemical Society)
PublicationYear 2025
SSID ssj0038822
Score 3.8349388
Snippet Li-air batteries are a post-Li-ion battery technology which promises extremely high energy densities. Many technological problems must be overcome before they...
SourceID crossref
SourceType Index Database
StartPage 2938
Title Exploring Discharge Product Distribution in Li-O 2 Batteries
Volume MA2025-01
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTgJBEO0gHvRiXOOePnibDIaeBSbxgiwRA8IBDTcyS2NI2MJy4YP8TqumF1olRrxMoMMUDPVSVV39qoqQO7fgu5wlvu3Eft92eRLZENX37Yg5fhzE_XwxwXrn5ov_9Oo-d71uJvNhsJaWiygXrzbWlfxHq7AGesUq2S00q4XCArwG_cIVNAzXP-l4TaCrDOZpzyOOzH9s4YorepgVJjUaA7tlMUv001TMQTXKiaeFz1YYYeID6R0Qd1bFgJxYdRSQ_E4jdfA4C1fikB-rq7kBnwq33ibDRMBBMvOtWs5q5Ay-j6D9DpF61tbrHT6agvtME7j1-Uwx-mVegnmY8JR2MzVfGEvYWHkrPI25JhqUKPvbLInb8wbcpIWWRjUQDWCkg1Zvfxp_F3unanE-w0-OFu_w5629nTrh_-YENTVRFGoHPSGm91XMDtllsB3BSRn1Vlt5fAd2KXhapZ9YVoqBmPuNv8aIgYxgpnNIDuQuhJYEpI5Iho-PyV5ZDf87IQ8aWlRDi0poURNadDCmCC3KqIbWKfFq1U75yVZf35uKnia9Xx_bOSPZ8WTMzwlNwnwUh04UBK4LPtYJ4oJT4LxfjDwWhiy5ILntZF9ue8MV2V_D7ZpkF7Mlv4HAcBHdplr5BPjCYyM
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Discharge+Product+Distribution+in+Li-O+2+Batteries&rft.jtitle=Meeting+abstracts+%28Electrochemical+Society%29&rft.au=Brazel%2C+Laurence&rft.au=De+Volder%2C+Michael+F.+L.&rft.au=Grey%2C+Clare+P.&rft.au=Temprano%2C+Israel&rft.date=2025-07-11&rft.issn=2151-2043&rft.eissn=2151-2035&rft.volume=MA2025-01&rft.issue=62&rft.spage=2938&rft.epage=2938&rft_id=info:doi/10.1149%2FMA2025-01622938mtgabs&rft.externalDBID=n%2Fa&rft.externalDocID=10_1149_MA2025_01622938mtgabs
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2151-2043&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2151-2043&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2151-2043&client=summon