Focused Ion and Electron Beam Nanometrologies for Probing Structures and Properties of Sulfur Copolymer-Based Nanocomposite Cathodes for Next Generation of High-Energy Density Li-S Batteries

In this study, we explore the chemical and morphological basis for enhanced capacity retention in sulfur-carbon cathodes made from poly(sulfur-random-(1,3-diisopropenylbenzene) (poly( S-r -DIB)) copolymers for high-energy density Li-S batteries using new Li-ion focused beam (LiFIB) and high-spatial...

Full description

Saved in:
Bibliographic Details
Published inMeeting abstracts (Electrochemical Society) Vol. MA2016-01; no. 2; p. 253
Main Authors Oleshko, Vladimir P., Herzing, Andrew, Twedt, Kevin A., Schaefer, Jennifer L., Griebel, Jared J, Chung, Woo Jin, Simmonds, Adam G, Pyun, Jeffrey, Soles, Christopher L, McClelland, Jabez J.
Format Journal Article
LanguageEnglish
Published 01.04.2016
Online AccessGet full text

Cover

Loading…
Abstract In this study, we explore the chemical and morphological basis for enhanced capacity retention in sulfur-carbon cathodes made from poly(sulfur-random-(1,3-diisopropenylbenzene) (poly( S-r -DIB)) copolymers for high-energy density Li-S batteries using new Li-ion focused beam (LiFIB) and high-spatial resolution analytical electron microscopy (AEM) instrumentation platforms [1, 2]. Sulfur copolymer-based composite cathodes exhibit an initial discharge capacity of 1225 mAh/g, high reversible discharge capacity, high cycle stability (1005 mAh/g at 100 cycles), and lifetimes of over 500 cycles [3, 4]. The DIB cross-linking agent not only transforms sulfur into an easy processable copolymer, but also promotes the generation of lithiated organosulfur products Li 4 (S x )4-DIB (x≈8), which effectively prevent the irreversible deposition of insoluble lower Li polysulfides and improve the cycling performance of the batteries. However, the root causes of these improvements are not yet well understood.  One of the reason is that the cathodes are randomly organized in a hierarchical 3D architecture which is composed of the poly( S-r -DIB) copolymers, aggregated conductive carbons, and a polymer binder is quite challenging to understand and characterize. Here we employ the combination of LiFIB and analytical transmission electron microscopy (TEM) and scanning TEM (STEM) techniques, coupled with multivariate statistical analysis (MSA), electron tomography, and electrical conductivity measurements to analyze the origins of this enhanced capacity retention [5]. High-resolution TEM (HRTEM) imaging and energy-dispersive X-ray (EDX) and electron energy-loss (EEL) spectroscopic analyses of the multiscale structural architectures in the cathodes up to the atomic scale reveal that the incorporation of the DIB cross-linking agent significantly improves the compatibility between the sulfur containing domains and the carbon black conductive particles in the composite cathodes, significantly decreasing the level of structural and compositional heterogeneity. Multimode STEM and MSA are used to identify statistically significant differences between spatial regions and produce an unbiased phase classification for quantifying these heterogeneities.  Valence EELS in the STEM mode has been applied to probe local phase distributions, bonding and mechanical properties (microhardness) in the poly( S-r -DIB) composite cathodes. We have found that the incorporation of the DIB into the sulfur copoloymers drastically enhances the molecular-level compatibility, which leads to a reduced propensity for cathode cracking upon cycling and provides intimate interfacial contacts between the poly( S-r -DIB) active material and onion-like carbon structure, forming random electrically conductive percolation networks within the composite cathode. As a result, a hierarchical cathode morphology is created that is electrochemically and mechanically more robust, leading to both increased specific capacity and enhanced cycle life over traditional Li-S batteries. References [1] K. A. Twedt et al., Ultramicroscopy 142 (2014) 24-31 [2] V.P. Oleshko et al., MRS Comm. 5 (2015) 353-364. [3] W.J. Chung, et al., Nature Chem. 5 (2013), 518-524. [4] A.G. Simmonds, et al., J. ACS Macro Lett . 3 (2014), 229-232. [5] V.P. Oleshko et al., Microsc. Microanal. 21 (Suppl. 3) (2015) 143-144.
AbstractList In this study, we explore the chemical and morphological basis for enhanced capacity retention in sulfur-carbon cathodes made from poly(sulfur-random-(1,3-diisopropenylbenzene) (poly( S-r -DIB)) copolymers for high-energy density Li-S batteries using new Li-ion focused beam (LiFIB) and high-spatial resolution analytical electron microscopy (AEM) instrumentation platforms [1, 2]. Sulfur copolymer-based composite cathodes exhibit an initial discharge capacity of 1225 mAh/g, high reversible discharge capacity, high cycle stability (1005 mAh/g at 100 cycles), and lifetimes of over 500 cycles [3, 4]. The DIB cross-linking agent not only transforms sulfur into an easy processable copolymer, but also promotes the generation of lithiated organosulfur products Li 4 (S x )4-DIB (x≈8), which effectively prevent the irreversible deposition of insoluble lower Li polysulfides and improve the cycling performance of the batteries. However, the root causes of these improvements are not yet well understood.  One of the reason is that the cathodes are randomly organized in a hierarchical 3D architecture which is composed of the poly( S-r -DIB) copolymers, aggregated conductive carbons, and a polymer binder is quite challenging to understand and characterize. Here we employ the combination of LiFIB and analytical transmission electron microscopy (TEM) and scanning TEM (STEM) techniques, coupled with multivariate statistical analysis (MSA), electron tomography, and electrical conductivity measurements to analyze the origins of this enhanced capacity retention [5]. High-resolution TEM (HRTEM) imaging and energy-dispersive X-ray (EDX) and electron energy-loss (EEL) spectroscopic analyses of the multiscale structural architectures in the cathodes up to the atomic scale reveal that the incorporation of the DIB cross-linking agent significantly improves the compatibility between the sulfur containing domains and the carbon black conductive particles in the composite cathodes, significantly decreasing the level of structural and compositional heterogeneity. Multimode STEM and MSA are used to identify statistically significant differences between spatial regions and produce an unbiased phase classification for quantifying these heterogeneities.  Valence EELS in the STEM mode has been applied to probe local phase distributions, bonding and mechanical properties (microhardness) in the poly( S-r -DIB) composite cathodes. We have found that the incorporation of the DIB into the sulfur copoloymers drastically enhances the molecular-level compatibility, which leads to a reduced propensity for cathode cracking upon cycling and provides intimate interfacial contacts between the poly( S-r -DIB) active material and onion-like carbon structure, forming random electrically conductive percolation networks within the composite cathode. As a result, a hierarchical cathode morphology is created that is electrochemically and mechanically more robust, leading to both increased specific capacity and enhanced cycle life over traditional Li-S batteries. References [1] K. A. Twedt et al., Ultramicroscopy 142 (2014) 24-31 [2] V.P. Oleshko et al., MRS Comm. 5 (2015) 353-364. [3] W.J. Chung, et al., Nature Chem. 5 (2013), 518-524. [4] A.G. Simmonds, et al., J. ACS Macro Lett . 3 (2014), 229-232. [5] V.P. Oleshko et al., Microsc. Microanal. 21 (Suppl. 3) (2015) 143-144.
Author Griebel, Jared J
McClelland, Jabez J.
Schaefer, Jennifer L.
Oleshko, Vladimir P.
Soles, Christopher L
Twedt, Kevin A.
Chung, Woo Jin
Herzing, Andrew
Simmonds, Adam G
Pyun, Jeffrey
Author_xml – sequence: 1
  givenname: Vladimir P.
  surname: Oleshko
  fullname: Oleshko, Vladimir P.
– sequence: 2
  givenname: Andrew
  surname: Herzing
  fullname: Herzing, Andrew
– sequence: 3
  givenname: Kevin A.
  surname: Twedt
  fullname: Twedt, Kevin A.
– sequence: 4
  givenname: Jennifer L.
  surname: Schaefer
  fullname: Schaefer, Jennifer L.
– sequence: 5
  givenname: Jared J
  surname: Griebel
  fullname: Griebel, Jared J
– sequence: 6
  givenname: Woo Jin
  surname: Chung
  fullname: Chung, Woo Jin
– sequence: 7
  givenname: Adam G
  surname: Simmonds
  fullname: Simmonds, Adam G
– sequence: 8
  givenname: Jeffrey
  surname: Pyun
  fullname: Pyun, Jeffrey
– sequence: 9
  givenname: Christopher L
  surname: Soles
  fullname: Soles, Christopher L
– sequence: 10
  givenname: Jabez J.
  orcidid: 0000-0001-5672-5965
  surname: McClelland
  fullname: McClelland, Jabez J.
BookMark eNqVUMFKw0AQXaSCrXr2Oj8Qs7tppR5tba2gRaj3ZU0naSTZCbMbMH_jnwh-mRss3j3NvMe894Y3ESNHDoW4UvJaqelt-nynpbpJpEp1qmfZiRhrNVOJltls9LdPszMx8f5dymw-13osvtaUdx738EgOrNvDqsY8cAQLtA1sraMGI66prNBDQQwvTG-VK2EXuMtDx5GOwu_PyLfIYTijAnZdXXQMS2qp7hvkZGGHmMEwp6YlXwWEpQ0H2h99t_gR4AEdsg1VfCCabKrykKwiU_Zwjy5qeniqkh0sbAjIMepCnBa29nh5nOciXa9el5skZ_KesTAtV43l3ihphp7Mb09GKqNN7Cn7v-IHBsZ2bg
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1149/MA2016-01/2/253
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2151-2035
EndPage 253
ExternalDocumentID 10_1149_MA2016_01_2_253
GroupedDBID 5VS
AAYXX
ACHIP
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BTFSW
CITATION
CJUJL
HH5
IOP
JGOPE
KOT
N5L
O3W
OK1
REC
RHF
ID FETCH-crossref_primary_10_1149_MA2016_01_2_2533
ISSN 2151-2043
IngestDate Fri Aug 23 02:05:13 EDT 2024
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1149_MA2016_01_2_2533
ORCID 0000-0001-5672-5965
ParticipantIDs crossref_primary_10_1149_MA2016_01_2_253
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Meeting abstracts (Electrochemical Society)
PublicationYear 2016
SSID ssj0038822
Score 3.2558413
Snippet In this study, we explore the chemical and morphological basis for enhanced capacity retention in sulfur-carbon cathodes made from...
SourceID crossref
SourceType Aggregation Database
StartPage 253
Title Focused Ion and Electron Beam Nanometrologies for Probing Structures and Properties of Sulfur Copolymer-Based Nanocomposite Cathodes for Next Generation of High-Energy Density Li-S Batteries
Volume MA2016-01
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW28QAviE8Bg-lKMAmpStvEaZY-dqXTQGNM2kB7i5LY0SraZuqaTduv4Z8g8ct2rz8Sr4BUeGjURvVNEx_Z17fnHDP2ritjIXBw9HwpcIESZr4XRzz3ih0exTLN-qlQbp-H0f7X8NNp73Rt_a3DWqoWWTu_-aOu5H96Fc9hv5JK9h96tg6KJ_A99i8esYfxuFIf75V5dYEZ40dDKR6ZPW1auzKd0sBZTiUR0Wk_ZeW7QLqATHtwk21shWttarg9DLYH3SOqy8_JYFUpWapJUc1xvDgvJ9dTOfd2U7oUBSUaOnG9pNIPlsLEPsRx3thY2zSUWCTeSMsLPxBVHlP-g7F33NK2npbAaHeUkkp_3Uozqr8QywTTX3NPuTU2MDTTO_VheXH2XZV8v01SMZ6O8T7bTZF3fmP2bXHIm1SruJJioaVJl1T0qVsck5Cg0FC25J_WQdutj_iRQ6tRwyjlNB4pgPWM557TRil2Hvg80M19B_aBO7b3uJMmmE-_z0AhGbjWsUhwQy_b1vX7XpqHa3ak1or3Ex0k6fpJkGCAdXYvIDdDUql-ObLpBsclEv1VVt-m8a_CAJ36V3SCTtDjTurl5FAnj9hDs_iBgUbyY7YmZ0_Y_aHdc_Ap-2kQDYhoQGCCRTQQomEJ0YCoA4NoaBBNDX_9aNAMZQEazbCEZriDZrBoVnEJzdCgmYI4aAaDZiA0Q43mZ6yzNzoZ7nv2CSTn2s0l-cvT5s_ZxqycyRcM4pyLHRlGnGciLDJcUuWUx4t-EfT6URy-ZO9Xjfpq9a9usgcNnF-zDXyK8g0mwItsSwHgFpNsuFM
link.rule.ids 315,783,787,27937,27938
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focused+Ion+and+Electron+Beam+Nanometrologies+for+Probing+Structures+and%C2%A0Properties+of+Sulfur+Copolymer-Based+Nanocomposite+Cathodes+for+Next+Generation+of+High-Energy+Density+Li-S+Batteries&rft.jtitle=Meeting+abstracts+%28Electrochemical+Society%29&rft.au=Oleshko%2C+Vladimir+P.&rft.au=Herzing%2C+Andrew&rft.au=Twedt%2C+Kevin+A.&rft.au=Schaefer%2C+Jennifer+L.&rft.date=2016-04-01&rft.issn=2151-2043&rft.eissn=2151-2035&rft.volume=MA2016-01&rft.issue=2&rft.spage=253&rft.epage=253&rft_id=info:doi/10.1149%2FMA2016-01%2F2%2F253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1149_MA2016_01_2_253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2151-2043&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2151-2043&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2151-2043&client=summon