Uncertainty decomposition and reduction in river flood forecasting: B elgian case study

Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. I...

Full description

Saved in:
Bibliographic Details
Published inJournal of flood risk management Vol. 8; no. 3; pp. 263 - 275
Main Authors Van Steenbergen, N., Willems, P.
Format Journal Article
LanguageEnglish
Published 01.09.2015
Online AccessGet full text
ISSN1753-318X
1753-318X
DOI10.1111/jfr3.12093

Cover

Loading…
Abstract Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. In this paper, three key uncertainty sources are studied for hydrological flood forecasting in the B elgian case study of the R ivierbeek: model uncertainty, forecasted rainfall uncertainty and uncertainty in the initial conditions. A non‐parametric data‐based approach is used to quantify the total uncertainty in the forecasts. By resimulating in the model historical forecasts with optimal initial conditions and observed rainfall, the uncertainty generated by each of the key sources could be identified. In order to reduce the model uncertainty, which was primarily identified as the most important source of uncertainty, a step‐wise physically based calibration technique was suggested. After recalibration of the model with this technique, a significant reduction of the contribution of the model uncertainty to the total forecast uncertainty could be achieved. Further improvement of the initial conditions, identified as the second most important uncertainty source for short lead times, could be obtained by applying data assimilation. Both uncertainty reduction techniques combined led to a reduction of the total forecast uncertainty with 30% to 40%.
AbstractList Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. In this paper, three key uncertainty sources are studied for hydrological flood forecasting in the B elgian case study of the R ivierbeek: model uncertainty, forecasted rainfall uncertainty and uncertainty in the initial conditions. A non‐parametric data‐based approach is used to quantify the total uncertainty in the forecasts. By resimulating in the model historical forecasts with optimal initial conditions and observed rainfall, the uncertainty generated by each of the key sources could be identified. In order to reduce the model uncertainty, which was primarily identified as the most important source of uncertainty, a step‐wise physically based calibration technique was suggested. After recalibration of the model with this technique, a significant reduction of the contribution of the model uncertainty to the total forecast uncertainty could be achieved. Further improvement of the initial conditions, identified as the second most important uncertainty source for short lead times, could be obtained by applying data assimilation. Both uncertainty reduction techniques combined led to a reduction of the total forecast uncertainty with 30% to 40%.
Author Van Steenbergen, N.
Willems, P.
Author_xml – sequence: 1
  givenname: N.
  surname: Van Steenbergen
  fullname: Van Steenbergen, N.
  organization: Hydraulics Division KU Leuven Leuven Belgium, Flanders Hydraulics Research Antwerp Belgium
– sequence: 2
  givenname: P.
  surname: Willems
  fullname: Willems, P.
  organization: Hydraulics Division KU Leuven Leuven Belgium
BookMark eNqVjs1KQzEQhQdpwf648QlmLbQmTfVWl4riAyi6CyGZlCm3SZmkwn17e4sLKd04m5lzmHP4xjBIORHAtVZzfZjbTRQz1wv1YC5gpJs7MzN69TX4c1_CuJSNUvfNqlmO4PMjeZLqONUOA_m83eXClXNClwIKhb0_Kk4o_E2Csc05YMxC3pXKaf2IT0jtml3Cg0NY6j50UxhG1xa6-t0TuHl9eX9-m3nJpQhFuxPeOumsVrZHtz26PaKbCaiTZ8_V9RhVHLfnI__o_wHsM15J
CitedBy_id crossref_primary_10_1016_j_jher_2018_02_003
crossref_primary_10_1111_jfr3_12516
crossref_primary_10_1111_jfr3_12515
crossref_primary_10_2166_nh_2018_177
crossref_primary_10_1007_s11356_023_28236_y
crossref_primary_10_1002_joc_5317
Cites_doi 10.1016/S0022-1694(00)00279-1
10.1029/97WR03495
10.1080/15715124.2008.9635342
10.1175/2009MWR2750.1
10.5194/hess-15-3253-2011
10.1257/jep.15.4.143
10.1002/(SICI)1099-1085(199910)13:14/15<2233::AID-HYP870>3.0.CO;2-5
10.1029/95WR03723
10.1016/j.atmosres.2010.12.005
10.1002/hyp.3360060305
10.1016/S0022-1694(01)00619-9
10.1016/j.advwatres.2011.08.012
10.1029/1999WR900099
10.1016/j.atmosres.2010.11.016
10.1016/j.jhydrol.2011.11.017
10.2307/1913643
10.1029/2000WR900108
10.1029/91WR01007
10.1016/j.advwatres.2012.07.012
10.1016/j.jhydrol.2009.06.005
10.1016/S0022-1694(01)00421-8
10.1016/S0022-1694(97)00107-8
10.1016/j.envsoft.2012.01.013
10.1016/j.envsoft.2008.09.005
10.2166/nh.1973.0013
10.1016/S0022-1694(03)00229-4
10.1016/j.jhydrol.2011.02.004
10.1111/j.2517-6161.1995.tb02015.x
10.5194/hess-14-1881-2010
10.1016/j.jhydrol.2009.08.003
10.1016/0022-1694(70)90255-6
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1111/jfr3.12093
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1753-318X
EndPage 275
ExternalDocumentID 10_1111_jfr3_12093
GroupedDBID 05W
0R~
1OC
24P
29K
31~
4.4
5DZ
5GY
6KP
8-1
AAESR
AAHHS
AANHP
AAYCA
AAYXX
AAZKR
ABCUV
ABJCF
ACBWZ
ACCFJ
ACCMX
ACGFO
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADMGS
ADNMO
ADPDF
ADXAS
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFGKR
AFKRA
AFRAH
AGQPQ
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ASPBG
ATCPS
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CAG
CCPQU
CITATION
COF
CS3
D-I
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HVGLF
HZ~
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7S
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PTHSS
PYCSY
ROL
SUPJJ
TEORI
WBKPD
WOHZO
XV2
ZZTAW
ID FETCH-crossref_primary_10_1111_jfr3_120933
ISSN 1753-318X
IngestDate Tue Jul 01 00:44:29 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1111_jfr3_120933
ParticipantIDs crossref_citationtrail_10_1111_jfr3_12093
crossref_primary_10_1111_jfr3_12093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-00
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-00
PublicationDecade 2010
PublicationTitle Journal of flood risk management
PublicationYear 2015
References e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Raftery A.E. (e_1_2_7_28_1) 1993
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Koenker R. (e_1_2_7_17_1) 2005
e_1_2_7_20_1
e_1_2_7_36_1
Nash J.E. (e_1_2_7_26_1) 1970; 273
References_xml – ident: e_1_2_7_23_1
  doi: 10.1016/S0022-1694(00)00279-1
– ident: e_1_2_7_15_1
  doi: 10.1029/97WR03495
– ident: e_1_2_7_30_1
  doi: 10.1080/15715124.2008.9635342
– ident: e_1_2_7_13_1
  doi: 10.1175/2009MWR2750.1
– ident: e_1_2_7_8_1
  doi: 10.5194/hess-15-3253-2011
– ident: e_1_2_7_19_1
  doi: 10.1257/jep.15.4.143
– ident: e_1_2_7_25_1
  doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2233::AID-HYP870>3.0.CO;2-5
– ident: e_1_2_7_12_1
  doi: 10.1029/95WR03723
– ident: e_1_2_7_36_1
  doi: 10.1016/j.atmosres.2010.12.005
– ident: e_1_2_7_3_1
  doi: 10.1002/hyp.3360060305
– ident: e_1_2_7_24_1
  doi: 10.1016/S0022-1694(01)00619-9
– ident: e_1_2_7_22_1
  doi: 10.1016/j.advwatres.2011.08.012
– ident: e_1_2_7_20_1
  doi: 10.1029/1999WR900099
– ident: e_1_2_7_29_1
  doi: 10.1016/j.atmosres.2010.11.016
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jhydrol.2011.11.017
– ident: e_1_2_7_18_1
  doi: 10.2307/1913643
– ident: e_1_2_7_21_1
  doi: 10.1029/2000WR900108
– ident: e_1_2_7_6_1
  doi: 10.1029/91WR01007
– ident: e_1_2_7_11_1
  doi: 10.1016/j.advwatres.2012.07.012
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jhydrol.2009.06.005
– ident: e_1_2_7_4_1
  doi: 10.1016/S0022-1694(01)00421-8
– ident: e_1_2_7_35_1
  doi: 10.1016/S0022-1694(97)00107-8
– start-page: 351
  volume-title: Econometric Society Monographs
  year: 2005
  ident: e_1_2_7_17_1
– ident: e_1_2_7_33_1
  doi: 10.1016/j.envsoft.2012.01.013
– ident: e_1_2_7_34_1
  doi: 10.1016/j.envsoft.2008.09.005
– ident: e_1_2_7_27_1
  doi: 10.2166/nh.1973.0013
– ident: e_1_2_7_2_1
  doi: 10.1016/S0022-1694(03)00229-4
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jhydrol.2011.02.004
– ident: e_1_2_7_10_1
  doi: 10.1111/j.2517-6161.1995.tb02015.x
– ident: e_1_2_7_5_1
  doi: 10.5194/hess-14-1881-2010
– ident: e_1_2_7_9_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jhydrol.2009.08.003
– volume: 273
  start-page: 282
  year: 1970
  ident: e_1_2_7_26_1
  article-title: River flow forecasting trough conceptual models
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(70)90255-6
– start-page: 163
  volume-title: Testing Structural Equation Models
  year: 1993
  ident: e_1_2_7_28_1
– ident: e_1_2_7_31_1
SSID ssj0067874
Score 3.9540782
Snippet Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the...
SourceID crossref
SourceType Index Database
Enrichment Source
StartPage 263
Title Uncertainty decomposition and reduction in river flood forecasting: B elgian case study
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPrG-WNCLlpQ2m6SJNysVESoeWu2tJOtEhBqlxosHf7szu8l2tRWql1CW7ObxfZ2Z3Xwzy9ix12wKkB44QQsajucnkROFSeh4sikStxX6UUrrHd2b4KrvXQ_8waQ8gcouyZO6_JiZV_IfVLENcaUs2T8gawbFBvyN-OIREcbjXBj3ETH1RR8j6QcgdXghwdKqcarKWmoZx6S_qKUkUydlIcj4rcx1btdg9Ej_c2yz681Oh6y6u1KjP0_JZu7IUuSgFWNQpHHZyzqgV3Vu6_ZKQ9M3UqrSOOLUhrKtB9p3zGgrLGpoEUfY1rGwZdrRunrLlN9seDoWdUrsFRNPVX6d_-HAjKzQTGiw71D1XWRLLs4faE-P7mendNHooFV5bnPzRd1aJfEy17UiFSvk6K2x1eLF83MN_DpbgGyDrVgVJDfZvUUB_o0CHCnADQX4U8YVBbjCkFsUOONtrgnAiQBcEWCLnV52ehdXTnlvw1ddlmQ4_fRim1Wylwx2GPfSJHSjRLq07Xsg41iKIIzjOGyAiKEFVXZiBpRFdXjapGQ0Y9gqO5rj4rtznbXHlidU22eVfPwOBxjm5cmhguwLJd9bWw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+decomposition+and+reduction+in+river+flood+forecasting%3A+B+elgian+case+study&rft.jtitle=Journal+of+flood+risk+management&rft.au=Van+Steenbergen%2C+N.&rft.au=Willems%2C+P.&rft.date=2015-09-01&rft.issn=1753-318X&rft.eissn=1753-318X&rft.volume=8&rft.issue=3&rft.spage=263&rft.epage=275&rft_id=info:doi/10.1111%2Fjfr3.12093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jfr3_12093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-318X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-318X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-318X&client=summon