Uncertainty decomposition and reduction in river flood forecasting: B elgian case study
Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. I...
Saved in:
Published in | Journal of flood risk management Vol. 8; no. 3; pp. 263 - 275 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.09.2015
|
Online Access | Get full text |
ISSN | 1753-318X 1753-318X |
DOI | 10.1111/jfr3.12093 |
Cover
Loading…
Abstract | Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. In this paper, three key uncertainty sources are studied for hydrological flood forecasting in the
B
elgian case study of the
R
ivierbeek: model uncertainty, forecasted rainfall uncertainty and uncertainty in the initial conditions. A non‐parametric data‐based approach is used to quantify the total uncertainty in the forecasts. By resimulating in the model historical forecasts with optimal initial conditions and observed rainfall, the uncertainty generated by each of the key sources could be identified. In order to reduce the model uncertainty, which was primarily identified as the most important source of uncertainty, a step‐wise physically based calibration technique was suggested. After recalibration of the model with this technique, a significant reduction of the contribution of the model uncertainty to the total forecast uncertainty could be achieved. Further improvement of the initial conditions, identified as the second most important uncertainty source for short lead times, could be obtained by applying data assimilation. Both uncertainty reduction techniques combined led to a reduction of the total forecast uncertainty with 30% to 40%. |
---|---|
AbstractList | Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. In this paper, three key uncertainty sources are studied for hydrological flood forecasting in the
B
elgian case study of the
R
ivierbeek: model uncertainty, forecasted rainfall uncertainty and uncertainty in the initial conditions. A non‐parametric data‐based approach is used to quantify the total uncertainty in the forecasts. By resimulating in the model historical forecasts with optimal initial conditions and observed rainfall, the uncertainty generated by each of the key sources could be identified. In order to reduce the model uncertainty, which was primarily identified as the most important source of uncertainty, a step‐wise physically based calibration technique was suggested. After recalibration of the model with this technique, a significant reduction of the contribution of the model uncertainty to the total forecast uncertainty could be achieved. Further improvement of the initial conditions, identified as the second most important uncertainty source for short lead times, could be obtained by applying data assimilation. Both uncertainty reduction techniques combined led to a reduction of the total forecast uncertainty with 30% to 40%. |
Author | Van Steenbergen, N. Willems, P. |
Author_xml | – sequence: 1 givenname: N. surname: Van Steenbergen fullname: Van Steenbergen, N. organization: Hydraulics Division KU Leuven Leuven Belgium, Flanders Hydraulics Research Antwerp Belgium – sequence: 2 givenname: P. surname: Willems fullname: Willems, P. organization: Hydraulics Division KU Leuven Leuven Belgium |
BookMark | eNqVjs1KQzEQhQdpwf648QlmLbQmTfVWl4riAyi6CyGZlCm3SZmkwn17e4sLKd04m5lzmHP4xjBIORHAtVZzfZjbTRQz1wv1YC5gpJs7MzN69TX4c1_CuJSNUvfNqlmO4PMjeZLqONUOA_m83eXClXNClwIKhb0_Kk4o_E2Csc05YMxC3pXKaf2IT0jtml3Cg0NY6j50UxhG1xa6-t0TuHl9eX9-m3nJpQhFuxPeOumsVrZHtz26PaKbCaiTZ8_V9RhVHLfnI__o_wHsM15J |
CitedBy_id | crossref_primary_10_1016_j_jher_2018_02_003 crossref_primary_10_1111_jfr3_12516 crossref_primary_10_1111_jfr3_12515 crossref_primary_10_2166_nh_2018_177 crossref_primary_10_1007_s11356_023_28236_y crossref_primary_10_1002_joc_5317 |
Cites_doi | 10.1016/S0022-1694(00)00279-1 10.1029/97WR03495 10.1080/15715124.2008.9635342 10.1175/2009MWR2750.1 10.5194/hess-15-3253-2011 10.1257/jep.15.4.143 10.1002/(SICI)1099-1085(199910)13:14/15<2233::AID-HYP870>3.0.CO;2-5 10.1029/95WR03723 10.1016/j.atmosres.2010.12.005 10.1002/hyp.3360060305 10.1016/S0022-1694(01)00619-9 10.1016/j.advwatres.2011.08.012 10.1029/1999WR900099 10.1016/j.atmosres.2010.11.016 10.1016/j.jhydrol.2011.11.017 10.2307/1913643 10.1029/2000WR900108 10.1029/91WR01007 10.1016/j.advwatres.2012.07.012 10.1016/j.jhydrol.2009.06.005 10.1016/S0022-1694(01)00421-8 10.1016/S0022-1694(97)00107-8 10.1016/j.envsoft.2012.01.013 10.1016/j.envsoft.2008.09.005 10.2166/nh.1973.0013 10.1016/S0022-1694(03)00229-4 10.1016/j.jhydrol.2011.02.004 10.1111/j.2517-6161.1995.tb02015.x 10.5194/hess-14-1881-2010 10.1016/j.jhydrol.2009.08.003 10.1016/0022-1694(70)90255-6 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1111/jfr3.12093 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1753-318X |
EndPage | 275 |
ExternalDocumentID | 10_1111_jfr3_12093 |
GroupedDBID | 05W 0R~ 1OC 24P 29K 31~ 4.4 5DZ 5GY 6KP 8-1 AAESR AAHHS AANHP AAYCA AAYXX AAZKR ABCUV ABJCF ACBWZ ACCFJ ACCMX ACGFO ACGFS ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADMGS ADNMO ADPDF ADXAS AEEZP AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFRAH AGQPQ AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ASPBG ATCPS AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BRXPI CAG CCPQU CITATION COF CS3 D-I DCZOG EBS EJD FEDTE G-S GODZA GROUPED_DOAJ HCIFZ HVGLF HZ~ LH4 LITHE LOXES LUTES LW6 LYRES M7S MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OIG OK1 OVD OVEED P2P P2W PATMY PCBAR PHGZM PHGZT PIMPY PTHSS PYCSY ROL SUPJJ TEORI WBKPD WOHZO XV2 ZZTAW |
ID | FETCH-crossref_primary_10_1111_jfr3_120933 |
ISSN | 1753-318X |
IngestDate | Tue Jul 01 00:44:29 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1111_jfr3_120933 |
ParticipantIDs | crossref_citationtrail_10_1111_jfr3_12093 crossref_primary_10_1111_jfr3_12093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-00 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of flood risk management |
PublicationYear | 2015 |
References | e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Raftery A.E. (e_1_2_7_28_1) 1993 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 Koenker R. (e_1_2_7_17_1) 2005 e_1_2_7_20_1 e_1_2_7_36_1 Nash J.E. (e_1_2_7_26_1) 1970; 273 |
References_xml | – ident: e_1_2_7_23_1 doi: 10.1016/S0022-1694(00)00279-1 – ident: e_1_2_7_15_1 doi: 10.1029/97WR03495 – ident: e_1_2_7_30_1 doi: 10.1080/15715124.2008.9635342 – ident: e_1_2_7_13_1 doi: 10.1175/2009MWR2750.1 – ident: e_1_2_7_8_1 doi: 10.5194/hess-15-3253-2011 – ident: e_1_2_7_19_1 doi: 10.1257/jep.15.4.143 – ident: e_1_2_7_25_1 doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2233::AID-HYP870>3.0.CO;2-5 – ident: e_1_2_7_12_1 doi: 10.1029/95WR03723 – ident: e_1_2_7_36_1 doi: 10.1016/j.atmosres.2010.12.005 – ident: e_1_2_7_3_1 doi: 10.1002/hyp.3360060305 – ident: e_1_2_7_24_1 doi: 10.1016/S0022-1694(01)00619-9 – ident: e_1_2_7_22_1 doi: 10.1016/j.advwatres.2011.08.012 – ident: e_1_2_7_20_1 doi: 10.1029/1999WR900099 – ident: e_1_2_7_29_1 doi: 10.1016/j.atmosres.2010.11.016 – ident: e_1_2_7_32_1 doi: 10.1016/j.jhydrol.2011.11.017 – ident: e_1_2_7_18_1 doi: 10.2307/1913643 – ident: e_1_2_7_21_1 doi: 10.1029/2000WR900108 – ident: e_1_2_7_6_1 doi: 10.1029/91WR01007 – ident: e_1_2_7_11_1 doi: 10.1016/j.advwatres.2012.07.012 – ident: e_1_2_7_7_1 doi: 10.1016/j.jhydrol.2009.06.005 – ident: e_1_2_7_4_1 doi: 10.1016/S0022-1694(01)00421-8 – ident: e_1_2_7_35_1 doi: 10.1016/S0022-1694(97)00107-8 – start-page: 351 volume-title: Econometric Society Monographs year: 2005 ident: e_1_2_7_17_1 – ident: e_1_2_7_33_1 doi: 10.1016/j.envsoft.2012.01.013 – ident: e_1_2_7_34_1 doi: 10.1016/j.envsoft.2008.09.005 – ident: e_1_2_7_27_1 doi: 10.2166/nh.1973.0013 – ident: e_1_2_7_2_1 doi: 10.1016/S0022-1694(03)00229-4 – ident: e_1_2_7_14_1 doi: 10.1016/j.jhydrol.2011.02.004 – ident: e_1_2_7_10_1 doi: 10.1111/j.2517-6161.1995.tb02015.x – ident: e_1_2_7_5_1 doi: 10.5194/hess-14-1881-2010 – ident: e_1_2_7_9_1 – ident: e_1_2_7_16_1 doi: 10.1016/j.jhydrol.2009.08.003 – volume: 273 start-page: 282 year: 1970 ident: e_1_2_7_26_1 article-title: River flow forecasting trough conceptual models publication-title: J Hydrol doi: 10.1016/0022-1694(70)90255-6 – start-page: 163 volume-title: Testing Structural Equation Models year: 1993 ident: e_1_2_7_28_1 – ident: e_1_2_7_31_1 |
SSID | ssj0067874 |
Score | 3.9540782 |
Snippet | Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the... |
SourceID | crossref |
SourceType | Index Database Enrichment Source |
StartPage | 263 |
Title | Uncertainty decomposition and reduction in river flood forecasting: B elgian case study |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPrG-WNCLlpQ2m6SJNysVESoeWu2tJOtEhBqlxosHf7szu8l2tRWql1CW7ObxfZ2Z3Xwzy9ix12wKkB44QQsajucnkROFSeh4sikStxX6UUrrHd2b4KrvXQ_8waQ8gcouyZO6_JiZV_IfVLENcaUs2T8gawbFBvyN-OIREcbjXBj3ETH1RR8j6QcgdXghwdKqcarKWmoZx6S_qKUkUydlIcj4rcx1btdg9Ej_c2yz681Oh6y6u1KjP0_JZu7IUuSgFWNQpHHZyzqgV3Vu6_ZKQ9M3UqrSOOLUhrKtB9p3zGgrLGpoEUfY1rGwZdrRunrLlN9seDoWdUrsFRNPVX6d_-HAjKzQTGiw71D1XWRLLs4faE-P7mendNHooFV5bnPzRd1aJfEy17UiFSvk6K2x1eLF83MN_DpbgGyDrVgVJDfZvUUB_o0CHCnADQX4U8YVBbjCkFsUOONtrgnAiQBcEWCLnV52ehdXTnlvw1ddlmQ4_fRim1Wylwx2GPfSJHSjRLq07Xsg41iKIIzjOGyAiKEFVXZiBpRFdXjapGQ0Y9gqO5rj4rtznbXHlidU22eVfPwOBxjm5cmhguwLJd9bWw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+decomposition+and+reduction+in+river+flood+forecasting%3A+B+elgian+case+study&rft.jtitle=Journal+of+flood+risk+management&rft.au=Van+Steenbergen%2C+N.&rft.au=Willems%2C+P.&rft.date=2015-09-01&rft.issn=1753-318X&rft.eissn=1753-318X&rft.volume=8&rft.issue=3&rft.spage=263&rft.epage=275&rft_id=info:doi/10.1111%2Fjfr3.12093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jfr3_12093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-318X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-318X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-318X&client=summon |