The mechanism on surface integrity and fatigue performance of double‐sided micro‐cutting enhanced FeCoCrNiAl 0.6 high entropy alloy

Abstract This study examines the impact of cutting parameters on the fatigue properties of FeCoCrNiAl0.6 high‐entropy alloy under bi‐directional micro‐cutting. Utilizing Abaqus/fe−safe for analysis, we evaluated surface roughness, internal stress distribution, and fatigue longevity. Enhanced cutting...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures
Main Authors Zhang, Ping, Lin, Zhenyong, Gao, Yeran, Zhang, Songting, Yue, Xiujie, Wang, Shunxiang
Format Journal Article
LanguageEnglish
Published 30.04.2024
Online AccessGet full text

Cover

Loading…
Abstract Abstract This study examines the impact of cutting parameters on the fatigue properties of FeCoCrNiAl0.6 high‐entropy alloy under bi‐directional micro‐cutting. Utilizing Abaqus/fe−safe for analysis, we evaluated surface roughness, internal stress distribution, and fatigue longevity. Enhanced cutting speed resulted in smoother surfaces, whereas increased cut depth intensified surface roughness. Optimal cutting at 60,000 mm/min and 40 μm depth yielded a notable 91% rise in compressive stress (207 MPa) compared to slower speeds (108 MPa at 30,000 mm/min). Yield strength remained stable at 700 MPa across conditions. Fatigue resistance improved post‐bi‐directional cutting, with a 21.8–26.6% boost in life cycles, highlighting a consistent 10% advantage over single‐direction cutting. Highlights The influence of bilateral micro‐cutting on fatigue performance was studied. The influence of micro‐cutting parameters on fatigue properties is studied. The release and transformation mechanism of residual stress in bilateral micro‐cutting is studied.
AbstractList Abstract This study examines the impact of cutting parameters on the fatigue properties of FeCoCrNiAl0.6 high‐entropy alloy under bi‐directional micro‐cutting. Utilizing Abaqus/fe−safe for analysis, we evaluated surface roughness, internal stress distribution, and fatigue longevity. Enhanced cutting speed resulted in smoother surfaces, whereas increased cut depth intensified surface roughness. Optimal cutting at 60,000 mm/min and 40 μm depth yielded a notable 91% rise in compressive stress (207 MPa) compared to slower speeds (108 MPa at 30,000 mm/min). Yield strength remained stable at 700 MPa across conditions. Fatigue resistance improved post‐bi‐directional cutting, with a 21.8–26.6% boost in life cycles, highlighting a consistent 10% advantage over single‐direction cutting. Highlights The influence of bilateral micro‐cutting on fatigue performance was studied. The influence of micro‐cutting parameters on fatigue properties is studied. The release and transformation mechanism of residual stress in bilateral micro‐cutting is studied.
Author Zhang, Songting
Wang, Shunxiang
Yue, Xiujie
Gao, Yeran
Lin, Zhenyong
Zhang, Ping
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0003-1995-9775
  surname: Zhang
  fullname: Zhang, Ping
  organization: College of Mechanical and Power Engineering Guangdong Ocean University Zhanjiang China, College of Intelligent Manufacturing Qingdao Huanghai University Qingdao China
– sequence: 2
  givenname: Zhenyong
  surname: Lin
  fullname: Lin, Zhenyong
  organization: College of Mechanical and Power Engineering Guangdong Ocean University Zhanjiang China
– sequence: 3
  givenname: Yeran
  surname: Gao
  fullname: Gao, Yeran
  organization: College of Mechanical and Power Engineering Guangdong Ocean University Zhanjiang China
– sequence: 4
  givenname: Songting
  surname: Zhang
  fullname: Zhang, Songting
  organization: College of Mechanical and Power Engineering Guangdong Ocean University Zhanjiang China
– sequence: 5
  givenname: Xiujie
  surname: Yue
  fullname: Yue, Xiujie
  organization: College of Intelligent Manufacturing Qingdao Huanghai University Qingdao China, College of Intelligent Manufacturing Qingdao University of Technology Qingdao China
– sequence: 6
  givenname: Shunxiang
  surname: Wang
  fullname: Wang, Shunxiang
  organization: College of Mechanical and Power Engineering Guangdong Ocean University Zhanjiang China
BookMark eNqVjzFOxDAQRS20SGSBghtMS5FgbxJnKVHEiopqCzrLm4xjo8SObKdIR0fLGTkJXsQF-M3oa56-9LZkY51FQu4YLVjKg1JYsKpkzQXJWMVpvuOP9YZk-6bmeVPv367INoR3ShmvyjIjn0eNMGGnpTVhAmchLF7JDsHYiIM3cQVpe1AymmFBmNEr5ydpE-EU9G45jfj98RVMjz1MpvMutW6J0dgB0Ooz2cMBW9f6V_M0Ai04aDPo9IzezWl-HN16Qy6VHAPe_t1rcn94PrYveRoMwaMSszeT9KtgVJxNRTIVv6blf9gfz69f5g
Cites_doi 10.1007/s11837-015-1563-9
10.1002/9781118536605
10.1016/j.jmapro.2017.11.023
10.1016/j.engfracmech.2018.01.013
10.1016/j.msea.2017.07.072
10.1002/adem.200300567
10.1016/j.ijmachtools.2003.10.018
10.1016/j.ijfatigue.2008.05.020
10.1016/0142-1123(84)90034-3
10.1016/j.vacuum.2022.111532
10.1016/j.actamat.2011.06.041
10.1016/j.ijfatigue.2008.06.003
10.1016/j.ijpvp.2019.103924
10.1016/j.ijfatigue.2015.01.011
10.1016/j.ijfatigue.2008.01.005
10.1016/j.matdes.2013.04.061
10.1007/s12541-019-00045-9
10.1051/matecconf/201821902005
10.1016/j.ijmachtools.2004.08.002
10.1016/j.jallcom.2019.06.301
10.1016/j.jmapro.2019.03.031
10.1016/j.ijmecsci.2017.05.031
10.1007/s11668-013-9772-4
10.1007/s11665-020-05050-y
10.1016/j.jmapro.2012.09.005
10.1016/j.ymssp.2017.07.011
10.1016/j.ijfatigue.2018.02.022
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1111/ffe.14317
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1460-2695
ExternalDocumentID 10_1111_ffe_14317
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OB
1OC
29H
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAP
EBS
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
ID FETCH-crossref_primary_10_1111_ffe_143173
ISSN 8756-758X
IngestDate Fri Aug 23 01:45:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1111_ffe_143173
ORCID 0000-0003-1995-9775
ParticipantIDs crossref_primary_10_1111_ffe_14317
PublicationCentury 2000
PublicationDate 2024-04-30
PublicationDateYYYYMMDD 2024-04-30
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-30
  day: 30
PublicationDecade 2020
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2024
References e_1_2_14_30_1
e_1_2_14_31_1
e_1_2_14_11_1
e_1_2_14_10_1
e_1_2_14_13_1
e_1_2_14_12_1
e_1_2_14_15_1
e_1_2_14_14_1
e_1_2_14_17_1
e_1_2_14_16_1
e_1_2_14_29_1
Deng G (e_1_2_14_3_1) 2009
Perdigo S (e_1_2_14_24_1) 2020; 2
e_1_2_14_6_1
e_1_2_14_5_1
e_1_2_14_8_1
e_1_2_14_7_1
e_1_2_14_9_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_4_1
e_1_2_14_23_1
e_1_2_14_21_1
e_1_2_14_22_1
e_1_2_14_27_1
e_1_2_14_28_1
e_1_2_14_25_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_18_1
References_xml – ident: e_1_2_14_14_1
  doi: 10.1007/s11837-015-1563-9
– ident: e_1_2_14_31_1
  doi: 10.1002/9781118536605
– ident: e_1_2_14_21_1
– ident: e_1_2_14_30_1
  doi: 10.1016/j.jmapro.2017.11.023
– ident: e_1_2_14_9_1
  doi: 10.1016/j.engfracmech.2018.01.013
– ident: e_1_2_14_8_1
  doi: 10.1016/j.msea.2017.07.072
– ident: e_1_2_14_29_1
  doi: 10.1002/adem.200300567
– ident: e_1_2_14_5_1
  doi: 10.1016/j.ijmachtools.2003.10.018
– ident: e_1_2_14_12_1
  doi: 10.1016/j.ijfatigue.2008.05.020
– ident: e_1_2_14_23_1
  doi: 10.1016/0142-1123(84)90034-3
– ident: e_1_2_14_22_1
  doi: 10.1016/j.vacuum.2022.111532
– ident: e_1_2_14_28_1
  doi: 10.1016/j.actamat.2011.06.041
– ident: e_1_2_14_2_1
  doi: 10.1016/j.ijfatigue.2008.06.003
– ident: e_1_2_14_18_1
  doi: 10.1016/j.ijpvp.2019.103924
– ident: e_1_2_14_17_1
  doi: 10.1016/j.ijfatigue.2015.01.011
– volume: 2
  issue: 5
  year: 2020
  ident: e_1_2_14_24_1
  article-title: 3d‐fe automatic procedure to evaluate the fatigue life extension by overloading
  publication-title: Mater des Process Commun
  contributor:
    fullname: Perdigo S
– start-page: 1
  year: 2009
  ident: e_1_2_14_3_1
  article-title: Evaluation of the effect of surface roughness on crack initiation life
  publication-title: ICF12
  contributor:
    fullname: Deng G
– ident: e_1_2_14_7_1
  doi: 10.1016/j.ijfatigue.2008.01.005
– ident: e_1_2_14_27_1
  doi: 10.1016/j.matdes.2013.04.061
– ident: e_1_2_14_15_1
  doi: 10.1007/s12541-019-00045-9
– ident: e_1_2_14_25_1
  doi: 10.1051/matecconf/201821902005
– ident: e_1_2_14_16_1
  doi: 10.1016/j.ijmachtools.2004.08.002
– ident: e_1_2_14_26_1
  doi: 10.1016/j.jallcom.2019.06.301
– ident: e_1_2_14_10_1
  doi: 10.1016/j.jmapro.2019.03.031
– ident: e_1_2_14_13_1
  doi: 10.1016/j.ijmecsci.2017.05.031
– ident: e_1_2_14_11_1
  doi: 10.1007/s11668-013-9772-4
– ident: e_1_2_14_19_1
  doi: 10.1007/s11665-020-05050-y
– ident: e_1_2_14_4_1
  doi: 10.1016/j.jmapro.2012.09.005
– ident: e_1_2_14_6_1
  doi: 10.1016/j.ymssp.2017.07.011
– ident: e_1_2_14_20_1
  doi: 10.1016/j.ijfatigue.2018.02.022
SSID ssj0016433
Score 4.860897
Snippet Abstract This study examines the impact of cutting parameters on the fatigue properties of FeCoCrNiAl0.6 high‐entropy alloy under bi‐directional micro‐cutting....
SourceID crossref
SourceType Aggregation Database
Title The mechanism on surface integrity and fatigue performance of double‐sided micro‐cutting enhanced FeCoCrNiAl 0.6 high entropy alloy
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN6gXvRgfMZ3JsaLaUpqKUWOBkXigRiDCXohfeyqCbQG6UFP3rz6B_xz_hJnuttt8RHRSwOb7S50PpjZ2W--ZWzP5qIuLFE3q0JYpmPb3DwMvcAMwyCskeRbIFKWb9ttXTpn3Wq3VHorsJaSkV8Onr6tK_mPVbEN7UpVsn-wrB4UG_A12hevaGG8TmzjAafaXTrqAu34kAyFF3AlAkEBNuXFBXa_SThJFOsiAYwRwzjx-1yzHejcztAYEEFPtwWJpEXz6FYyBZq8ETeG7bujvmGVXYPEjg3KD8f3OFW_H49tEjfVvIQuQdVYtFmBE_NcA9HAgFk-qbSXVLPFbjrS1wnt88zHEntICh9c3_LoMc6bT70073vFhznk84Q4dhxlY6g0h-0UdmwyJqhr4uKmKx2X_Ld2XMu0XXlK5w--QAiO3qAiC0TH9bY_-UHNTszWRXhrL711is3YtXqVGKPHF1qdDBealYpMH8tPpoSriCimZy2EO4W4pbPA5tWCA44kehZZiUdLbK4gQ7nMXhBHoHEEcQQKR6BxBIgjUDiCAo4gFiBx9P78miIIUgThO4UdyLADOXYAsQOEHVDYgRQ7K2y_edJptMzsu_TupRZK78uzqqyy6SiO-BoDkp6s4a_d8njNscWBFzq-V_UDm1QnD0OxznZ_H29jkk6bbDbHzBabRrDybQwWR_5OarIPHxJ14g
link.rule.ids 315,786,790,27955,27956
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+on+surface+integrity+and+fatigue+performance+of+double%E2%80%90sided+micro%E2%80%90cutting+enhanced+FeCoCrNiAl+0.6+high+entropy+alloy&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Zhang%2C+Ping&rft.au=Lin%2C+Zhenyong&rft.au=Gao%2C+Yeran&rft.au=Zhang%2C+Songting&rft.date=2024-04-30&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111%2Fffe.14317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ffe_14317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon