Transcription factor expression levels and environmental signals constrain transcription factor innovation This article is part of the Microbial Evolution collection
Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adapta...
Saved in:
Published in | Microbiology (Society for General Microbiology) Vol. 169; no. 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
16.08.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adaptation varies between different regulators, even when they are closely related. To identify factors influencing propensity for innovation, we utilise a
Pseudomonas fluorescens
SBW25 strain rendered incapable of flagellar mediated motility in soft-agar plates via deletion of the flagellar master regulator (
fleQ
). This bacterium can evolve to rescue flagellar motility via gene regulatory network rewiring of an alternative transcription factor to rescue activity of FleQ. Previously, we have identified two members (out of 22) of the RpoN-dependent enhancer binding protein (RpoN-EBP) family of transcription factors (NtrC and PFLU1132) that are capable of innovating in this way. These two transcription factors rescue motility repeatably and reliably in a strict hierarchy – with NtrC the only route in a ∆
fleQ
background, and PFLU1132 the only route in a ∆
fleQ
∆
ntrC
background. However, why other members in the same transcription factor family have not been observed to rescue flagellar activity is unclear. Previous work shows that protein homology cannot explain this pattern within the protein family (RpoN-EBPs), and mutations in strains that rescued motility suggested high levels of transcription factor expression and activation drive innovation. We predict that mutations that increase expression of the transcription factor are vital to unlock evolutionary potential for innovation. Here, we construct titratable expression mutant lines for 11 of the RpoN-EBPs in
P. fluorescens
. We show that in five additional RpoN-EBPs (FleR, HbcR, GcsR, DctD, AauR and PFLU2209), high expression levels result in different mutations conferring motility rescue, suggesting alternative rewiring pathways. Our results indicate that expression levels (and not protein homology) of RpoN-EBPs are a key constraining factor in determining evolutionary potential for innovation. This suggests that transcription factors that can achieve high expression through few mutational changes, or transcription factors that are active in the selective environment, are more likely to innovate and contribute to adaptive gene regulatory network evolution. |
---|---|
AbstractList | Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adaptation varies between different regulators, even when they are closely related. To identify factors influencing propensity for innovation, we utilise a
Pseudomonas fluorescens
SBW25 strain rendered incapable of flagellar mediated motility in soft-agar plates via deletion of the flagellar master regulator (
fleQ
). This bacterium can evolve to rescue flagellar motility via gene regulatory network rewiring of an alternative transcription factor to rescue activity of FleQ. Previously, we have identified two members (out of 22) of the RpoN-dependent enhancer binding protein (RpoN-EBP) family of transcription factors (NtrC and PFLU1132) that are capable of innovating in this way. These two transcription factors rescue motility repeatably and reliably in a strict hierarchy – with NtrC the only route in a ∆
fleQ
background, and PFLU1132 the only route in a ∆
fleQ
∆
ntrC
background. However, why other members in the same transcription factor family have not been observed to rescue flagellar activity is unclear. Previous work shows that protein homology cannot explain this pattern within the protein family (RpoN-EBPs), and mutations in strains that rescued motility suggested high levels of transcription factor expression and activation drive innovation. We predict that mutations that increase expression of the transcription factor are vital to unlock evolutionary potential for innovation. Here, we construct titratable expression mutant lines for 11 of the RpoN-EBPs in
P. fluorescens
. We show that in five additional RpoN-EBPs (FleR, HbcR, GcsR, DctD, AauR and PFLU2209), high expression levels result in different mutations conferring motility rescue, suggesting alternative rewiring pathways. Our results indicate that expression levels (and not protein homology) of RpoN-EBPs are a key constraining factor in determining evolutionary potential for innovation. This suggests that transcription factors that can achieve high expression through few mutational changes, or transcription factors that are active in the selective environment, are more likely to innovate and contribute to adaptive gene regulatory network evolution. |
Author | Shepherd, Matthew J. Pierce, Aidan P. Taylor, Tiffany B. Reynolds, Mitchell Rice, Alan M. |
Author_xml | – sequence: 1 givenname: Matthew J. orcidid: 0000-0002-3283-9930 surname: Shepherd fullname: Shepherd, Matthew J. organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK, Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK – sequence: 2 givenname: Mitchell surname: Reynolds fullname: Reynolds, Mitchell organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK – sequence: 3 givenname: Aidan P. surname: Pierce fullname: Pierce, Aidan P. organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK – sequence: 4 givenname: Alan M. orcidid: 0000-0002-0226-6449 surname: Rice fullname: Rice, Alan M. organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK – sequence: 5 givenname: Tiffany B. orcidid: 0000-0002-5274-7806 surname: Taylor fullname: Taylor, Tiffany B. organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK |
BookMark | eNqVj81qwzAQhEVJoPm75QH0ALWzivPjnEtDHiB3IZR1ULBXZleY9u0r0xxz6WmWmdmBb64mFAmVWhsoDZxOmy74EkoAUx3rNzUzu8O-2EINk3xXeyigPm7f1VzkkTu7A5iZelzZkXgOfQqRdON8iqzxu2cUGZ0WB2xFO7pppCFwpA4puVZLuJPLiY8kiV0gnV5NBaI4uNFZqmmTH3D11IX6OH9dPy-F5yjC2NieQ-f4xxqwI4_NPBbsH0_1z_ovxSRYLQ |
Cites_doi | 10.1016/j.jmb.2019.04.011 10.1093/molbev/msab199 10.1111/j.1574-6976.2010.00240.x 10.1371/journal.pgen.1009433 10.1038/s41559-018-0651-y 10.3389/fmicb.2018.01637 10.1007/978-1-4939-0554-6 10.1371/journal.ppat.1008680 10.1371/journal.pcbi.1008130 10.1016/j.mib.2006.08.007 10.1128/JB.01242-09 10.1073/pnas.2001240117 10.1038/srep44948 10.1016/j.jmb.2007.04.019 10.1126/science.1259145 10.1016/j.mib.2003.09.002 10.1046/j.1365-2958.2003.03740.x 10.1128/JB.01887-05 10.1126/science.1249046 10.1016/j.cub.2007.05.017 10.1038/msb.2009.52 10.1371/journal.pcbi.1000873 10.1038/s41467-021-26286-9 10.1128/mSphere.00200-16 10.1002/jobm.201000022 10.1093/bib/bbx108 10.7554/eLife.70931 10.1128/MMBR.00006-12 10.1093/molbev/msac132 10.1371/journal.pcbi.1007727 10.1128/JB.185.6.1757-1767.2003 10.1016/j.mib.2010.01.009 10.1093/bioinformatics/btu031 10.1088/1478-3975/ab8697 10.3390/ijms22073337 10.1016/j.biosystems.2012.08.004 10.3389/fmicb.2014.00643 10.1038/ncomms10105 10.15698/mic2015.07.215 10.1186/jbiol204 10.1186/gb-2009-10-5-r51 10.1128/JB.00744-09 10.1038/ncomms5868 10.1128/JB.00804-15 10.1093/molbev/msz042 10.1111/j.1432-1033.1993.tb18172.x 10.1101/2022.07.12.499626 10.1016/j.tibs.2014.12.004 10.1016/j.mib.2022.02.002 10.1038/nature06847 10.1111/1462-2920.12469 10.1099/mic.0.000163 10.1038/ncomms12307 10.1128/JB.00143-17 10.1128/AAC.05829-11 10.1093/bioinformatics/bty560 10.1093/nar/gkaa913 10.1128/AEM.02041-16 10.1111/j.1574-6968.2000.tb09074.x 10.1038/s41576-018-0069-z 10.1186/s12864-019-5918-4 10.1073/pnas.1702581114 10.1021/ja1059685 10.1146/annurev-micro-102215-095331 10.1038/nprot.2006.24 10.3389/fmicb.2021.707711 10.1093/nar/gkv1189 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1099/mic.0.001378 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1465-2080 |
ExternalDocumentID | 10_1099_mic_0_001378 |
GroupedDBID | --- -DZ -~X 123 2WC 4.4 53G 5RE AAYXX ABPPZ ACNCT ADCDP ALMA_UNASSIGNED_HOLDINGS CITATION CS3 DIK E3Z EBS EJD F5P GX1 H13 H~9 L7B P0W P2P RGM RHF RPM S10 TAE UQL W8F WH7 WOQ YR2 ~02 |
ID | FETCH-crossref_primary_10_1099_mic_0_0013783 |
ISSN | 1350-0872 |
IngestDate | Fri Dec 06 00:43:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1099_mic_0_0013783 |
ORCID | 0000-0002-3283-9930 0000-0002-0226-6449 0000-0002-5274-7806 |
ParticipantIDs | crossref_primary_10_1099_mic_0_001378 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-16 |
PublicationDateYYYYMMDD | 2023-08-16 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Microbiology (Society for General Microbiology) |
PublicationYear | 2023 |
References | R61 R60 R63 R62 R21 R65 R20 R64 R23 R67 R22 R66 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 |
References_xml | – ident: R29 doi: 10.1016/j.jmb.2019.04.011 – ident: R46 doi: 10.1093/molbev/msab199 – ident: R57 doi: 10.1111/j.1574-6976.2010.00240.x – ident: R4 doi: 10.1371/journal.pgen.1009433 – ident: R9 doi: 10.1038/s41559-018-0651-y – ident: R26 doi: 10.3389/fmicb.2018.01637 – ident: R41 doi: 10.1007/978-1-4939-0554-6 – ident: R56 doi: 10.1371/journal.ppat.1008680 – ident: R25 doi: 10.1371/journal.pcbi.1008130 – ident: R27 doi: 10.1016/j.mib.2006.08.007 – ident: R30 doi: 10.1128/JB.01242-09 – ident: R47 doi: 10.1073/pnas.2001240117 – ident: R12 doi: 10.1038/srep44948 – ident: R59 doi: 10.1016/j.jmb.2007.04.019 – ident: R16 doi: 10.1126/science.1259145 – ident: R19 doi: 10.1016/j.mib.2003.09.002 – ident: R49 doi: 10.1046/j.1365-2958.2003.03740.x – ident: R28 doi: 10.1128/JB.01887-05 – ident: R10 doi: 10.1126/science.1249046 – ident: R7 doi: 10.1016/j.cub.2007.05.017 – ident: R66 doi: 10.1038/msb.2009.52 – ident: R64 doi: 10.1371/journal.pcbi.1000873 – ident: R34 doi: 10.1038/s41467-021-26286-9 – ident: R52 doi: 10.1128/mSphere.00200-16 – ident: R55 doi: 10.1002/jobm.201000022 – ident: R42 doi: 10.1093/bib/bbx108 – ident: R8 doi: 10.7554/eLife.70931 – ident: R60 doi: 10.1128/MMBR.00006-12 – ident: R35 doi: 10.1093/molbev/msac132 – ident: R63 doi: 10.1371/journal.pcbi.1007727 – ident: R17 doi: 10.1128/JB.185.6.1757-1767.2003 – ident: R22 doi: 10.1016/j.mib.2010.01.009 – ident: R44 doi: 10.1093/bioinformatics/btu031 – ident: R14 doi: 10.1088/1478-3975/ab8697 – ident: R48 doi: 10.3390/ijms22073337 – ident: R21 doi: 10.1016/j.biosystems.2012.08.004 – ident: R32 doi: 10.3389/fmicb.2014.00643 – ident: R5 doi: 10.1038/ncomms10105 – ident: R33 doi: 10.15698/mic2015.07.215 – ident: R11 doi: 10.1186/jbiol204 – ident: R40 doi: 10.1186/gb-2009-10-5-r51 – ident: R67 doi: 10.1128/JB.00744-09 – ident: R15 doi: 10.1038/ncomms5868 – ident: R53 doi: 10.1128/JB.00804-15 – ident: R20 doi: 10.1093/molbev/msz042 – ident: R51 doi: 10.1111/j.1432-1033.1993.tb18172.x – ident: R2 doi: 10.1101/2022.07.12.499626 – ident: R13 doi: 10.1016/j.tibs.2014.12.004 – ident: R3 doi: 10.1016/j.mib.2022.02.002 – ident: R6 doi: 10.1038/nature06847 – ident: R38 doi: 10.1111/1462-2920.12469 – ident: R58 doi: 10.1099/mic.0.000163 – ident: R65 doi: 10.1038/ncomms12307 – ident: R24 doi: 10.1128/JB.00143-17 – ident: R31 doi: 10.1128/AAC.05829-11 – ident: R39 doi: 10.1093/bioinformatics/bty560 – ident: R43 doi: 10.1093/nar/gkaa913 – ident: R36 doi: 10.1128/AEM.02041-16 – ident: R61 doi: 10.1111/j.1574-6968.2000.tb09074.x – ident: R1 doi: 10.1038/s41576-018-0069-z – ident: R62 doi: 10.1186/s12864-019-5918-4 – ident: R18 doi: 10.1073/pnas.1702581114 – ident: R54 doi: 10.1021/ja1059685 – ident: R23 doi: 10.1146/annurev-micro-102215-095331 – ident: R37 doi: 10.1038/nprot.2006.24 – ident: R50 doi: 10.3389/fmicb.2021.707711 – ident: R45 doi: 10.1093/nar/gkv1189 |
SSID | ssj0014601 |
Score | 4.9303584 |
Snippet | Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can... |
SourceID | crossref |
SourceType | Aggregation Database |
Subtitle | This article is part of the Microbial Evolution collection |
Title | Transcription factor expression levels and environmental signals constrain transcription factor innovation |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKERIL4lN8ywNMJSEkTkrGCgFVJVgoUreoSR0IKilC6VB-DL-Vu5xxXMhQWKLKil0r93K-2O_uMXbSDvwwTIPUcmJXWsIV8Eq5o6ElwthJvVi0ZVISZO-D7qPoDfxBo_FpsJamRWwnH7V5Jf-xKrSBXTFL9g-W1YNCA_wG-8IVLAzXxWyMC41-7Uk6B2v2E7c1b42REURFmI2ENswQyZ7KuskJRocoEoFSEb-HyrRkqhnD3mVG8SYIUE3ip6pi3TLvMTYbHp6RU0ZseqU03urZ-tBHzvLJeET731lRclS1686QgVN6smyEjrvqpXTrO2M8d7LNbQzXw31ZyrJUntfzkVhHOj62pDaBFDyHpJ60uyZpF4XLy9plAMJesN1rlthI3LvwSCVovtr2j1VQcxPpVD6MoHeEpVOx9xJbxkKLqM1wO9AUIpieQx_0auoqsQJ6n5v_bYQ8RuzSX2dr6qODdwhBG6wh8022QjKksy32MocjTsbnFY444YgDjvgcjrjCEdc44kXdUBWOttnZzXX_qmt9TzV6o3InUd0D8XZYM5_kcpfxFCPSWA5diHKECCD-i30nDdx0GAauTL09drrQkPsL3nfAViv8HLJm8T6VRxAYFvFxaZ0vnxNvcg |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcription+factor+expression+levels+and+environmental+signals+constrain+transcription+factor+innovation&rft.jtitle=Microbiology+%28Society+for+General+Microbiology%29&rft.au=Shepherd%2C+Matthew+J.&rft.au=Reynolds%2C+Mitchell&rft.au=Pierce%2C+Aidan+P.&rft.au=Rice%2C+Alan+M.&rft.date=2023-08-16&rft.issn=1350-0872&rft.eissn=1465-2080&rft.volume=169&rft.issue=8&rft_id=info:doi/10.1099%2Fmic.0.001378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1099_mic_0_001378 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-0872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-0872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-0872&client=summon |