Transcription factor expression levels and environmental signals constrain transcription factor innovation This article is part of the Microbial Evolution collection

Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adapta...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology (Society for General Microbiology) Vol. 169; no. 8
Main Authors Shepherd, Matthew J., Reynolds, Mitchell, Pierce, Aidan P., Rice, Alan M., Taylor, Tiffany B.
Format Journal Article
LanguageEnglish
Published 16.08.2023
Online AccessGet full text

Cover

Loading…
Abstract Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adaptation varies between different regulators, even when they are closely related. To identify factors influencing propensity for innovation, we utilise a Pseudomonas fluorescens SBW25 strain rendered incapable of flagellar mediated motility in soft-agar plates via deletion of the flagellar master regulator ( fleQ ). This bacterium can evolve to rescue flagellar motility via gene regulatory network rewiring of an alternative transcription factor to rescue activity of FleQ. Previously, we have identified two members (out of 22) of the RpoN-dependent enhancer binding protein (RpoN-EBP) family of transcription factors (NtrC and PFLU1132) that are capable of innovating in this way. These two transcription factors rescue motility repeatably and reliably in a strict hierarchy – with NtrC the only route in a ∆ fleQ background, and PFLU1132 the only route in a ∆ fleQ ∆ ntrC background. However, why other members in the same transcription factor family have not been observed to rescue flagellar activity is unclear. Previous work shows that protein homology cannot explain this pattern within the protein family (RpoN-EBPs), and mutations in strains that rescued motility suggested high levels of transcription factor expression and activation drive innovation. We predict that mutations that increase expression of the transcription factor are vital to unlock evolutionary potential for innovation. Here, we construct titratable expression mutant lines for 11 of the RpoN-EBPs in P. fluorescens . We show that in five additional RpoN-EBPs (FleR, HbcR, GcsR, DctD, AauR and PFLU2209), high expression levels result in different mutations conferring motility rescue, suggesting alternative rewiring pathways. Our results indicate that expression levels (and not protein homology) of RpoN-EBPs are a key constraining factor in determining evolutionary potential for innovation. This suggests that transcription factors that can achieve high expression through few mutational changes, or transcription factors that are active in the selective environment, are more likely to innovate and contribute to adaptive gene regulatory network evolution.
AbstractList Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adaptation varies between different regulators, even when they are closely related. To identify factors influencing propensity for innovation, we utilise a Pseudomonas fluorescens SBW25 strain rendered incapable of flagellar mediated motility in soft-agar plates via deletion of the flagellar master regulator ( fleQ ). This bacterium can evolve to rescue flagellar motility via gene regulatory network rewiring of an alternative transcription factor to rescue activity of FleQ. Previously, we have identified two members (out of 22) of the RpoN-dependent enhancer binding protein (RpoN-EBP) family of transcription factors (NtrC and PFLU1132) that are capable of innovating in this way. These two transcription factors rescue motility repeatably and reliably in a strict hierarchy – with NtrC the only route in a ∆ fleQ background, and PFLU1132 the only route in a ∆ fleQ ∆ ntrC background. However, why other members in the same transcription factor family have not been observed to rescue flagellar activity is unclear. Previous work shows that protein homology cannot explain this pattern within the protein family (RpoN-EBPs), and mutations in strains that rescued motility suggested high levels of transcription factor expression and activation drive innovation. We predict that mutations that increase expression of the transcription factor are vital to unlock evolutionary potential for innovation. Here, we construct titratable expression mutant lines for 11 of the RpoN-EBPs in P. fluorescens . We show that in five additional RpoN-EBPs (FleR, HbcR, GcsR, DctD, AauR and PFLU2209), high expression levels result in different mutations conferring motility rescue, suggesting alternative rewiring pathways. Our results indicate that expression levels (and not protein homology) of RpoN-EBPs are a key constraining factor in determining evolutionary potential for innovation. This suggests that transcription factors that can achieve high expression through few mutational changes, or transcription factors that are active in the selective environment, are more likely to innovate and contribute to adaptive gene regulatory network evolution.
Author Shepherd, Matthew J.
Pierce, Aidan P.
Taylor, Tiffany B.
Reynolds, Mitchell
Rice, Alan M.
Author_xml – sequence: 1
  givenname: Matthew J.
  orcidid: 0000-0002-3283-9930
  surname: Shepherd
  fullname: Shepherd, Matthew J.
  organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK, Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
– sequence: 2
  givenname: Mitchell
  surname: Reynolds
  fullname: Reynolds, Mitchell
  organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
– sequence: 3
  givenname: Aidan P.
  surname: Pierce
  fullname: Pierce, Aidan P.
  organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
– sequence: 4
  givenname: Alan M.
  orcidid: 0000-0002-0226-6449
  surname: Rice
  fullname: Rice, Alan M.
  organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
– sequence: 5
  givenname: Tiffany B.
  orcidid: 0000-0002-5274-7806
  surname: Taylor
  fullname: Taylor, Tiffany B.
  organization: Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
BookMark eNqVj81qwzAQhEVJoPm75QH0ALWzivPjnEtDHiB3IZR1ULBXZleY9u0r0xxz6WmWmdmBb64mFAmVWhsoDZxOmy74EkoAUx3rNzUzu8O-2EINk3xXeyigPm7f1VzkkTu7A5iZelzZkXgOfQqRdON8iqzxu2cUGZ0WB2xFO7pppCFwpA4puVZLuJPLiY8kiV0gnV5NBaI4uNFZqmmTH3D11IX6OH9dPy-F5yjC2NieQ-f4xxqwI4_NPBbsH0_1z_ovxSRYLQ
Cites_doi 10.1016/j.jmb.2019.04.011
10.1093/molbev/msab199
10.1111/j.1574-6976.2010.00240.x
10.1371/journal.pgen.1009433
10.1038/s41559-018-0651-y
10.3389/fmicb.2018.01637
10.1007/978-1-4939-0554-6
10.1371/journal.ppat.1008680
10.1371/journal.pcbi.1008130
10.1016/j.mib.2006.08.007
10.1128/JB.01242-09
10.1073/pnas.2001240117
10.1038/srep44948
10.1016/j.jmb.2007.04.019
10.1126/science.1259145
10.1016/j.mib.2003.09.002
10.1046/j.1365-2958.2003.03740.x
10.1128/JB.01887-05
10.1126/science.1249046
10.1016/j.cub.2007.05.017
10.1038/msb.2009.52
10.1371/journal.pcbi.1000873
10.1038/s41467-021-26286-9
10.1128/mSphere.00200-16
10.1002/jobm.201000022
10.1093/bib/bbx108
10.7554/eLife.70931
10.1128/MMBR.00006-12
10.1093/molbev/msac132
10.1371/journal.pcbi.1007727
10.1128/JB.185.6.1757-1767.2003
10.1016/j.mib.2010.01.009
10.1093/bioinformatics/btu031
10.1088/1478-3975/ab8697
10.3390/ijms22073337
10.1016/j.biosystems.2012.08.004
10.3389/fmicb.2014.00643
10.1038/ncomms10105
10.15698/mic2015.07.215
10.1186/jbiol204
10.1186/gb-2009-10-5-r51
10.1128/JB.00744-09
10.1038/ncomms5868
10.1128/JB.00804-15
10.1093/molbev/msz042
10.1111/j.1432-1033.1993.tb18172.x
10.1101/2022.07.12.499626
10.1016/j.tibs.2014.12.004
10.1016/j.mib.2022.02.002
10.1038/nature06847
10.1111/1462-2920.12469
10.1099/mic.0.000163
10.1038/ncomms12307
10.1128/JB.00143-17
10.1128/AAC.05829-11
10.1093/bioinformatics/bty560
10.1093/nar/gkaa913
10.1128/AEM.02041-16
10.1111/j.1574-6968.2000.tb09074.x
10.1038/s41576-018-0069-z
10.1186/s12864-019-5918-4
10.1073/pnas.1702581114
10.1021/ja1059685
10.1146/annurev-micro-102215-095331
10.1038/nprot.2006.24
10.3389/fmicb.2021.707711
10.1093/nar/gkv1189
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1099/mic.0.001378
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1465-2080
ExternalDocumentID 10_1099_mic_0_001378
GroupedDBID ---
-DZ
-~X
123
2WC
4.4
53G
5RE
AAYXX
ABPPZ
ACNCT
ADCDP
ALMA_UNASSIGNED_HOLDINGS
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
GX1
H13
H~9
L7B
P0W
P2P
RGM
RHF
RPM
S10
TAE
UQL
W8F
WH7
WOQ
YR2
~02
ID FETCH-crossref_primary_10_1099_mic_0_0013783
ISSN 1350-0872
IngestDate Fri Dec 06 00:43:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1099_mic_0_0013783
ORCID 0000-0002-3283-9930
0000-0002-0226-6449
0000-0002-5274-7806
ParticipantIDs crossref_primary_10_1099_mic_0_001378
PublicationCentury 2000
PublicationDate 2023-08-16
PublicationDateYYYYMMDD 2023-08-16
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-16
  day: 16
PublicationDecade 2020
PublicationTitle Microbiology (Society for General Microbiology)
PublicationYear 2023
References R61
R60
R63
R62
R21
R65
R20
R64
R23
R67
R22
R66
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R29
  doi: 10.1016/j.jmb.2019.04.011
– ident: R46
  doi: 10.1093/molbev/msab199
– ident: R57
  doi: 10.1111/j.1574-6976.2010.00240.x
– ident: R4
  doi: 10.1371/journal.pgen.1009433
– ident: R9
  doi: 10.1038/s41559-018-0651-y
– ident: R26
  doi: 10.3389/fmicb.2018.01637
– ident: R41
  doi: 10.1007/978-1-4939-0554-6
– ident: R56
  doi: 10.1371/journal.ppat.1008680
– ident: R25
  doi: 10.1371/journal.pcbi.1008130
– ident: R27
  doi: 10.1016/j.mib.2006.08.007
– ident: R30
  doi: 10.1128/JB.01242-09
– ident: R47
  doi: 10.1073/pnas.2001240117
– ident: R12
  doi: 10.1038/srep44948
– ident: R59
  doi: 10.1016/j.jmb.2007.04.019
– ident: R16
  doi: 10.1126/science.1259145
– ident: R19
  doi: 10.1016/j.mib.2003.09.002
– ident: R49
  doi: 10.1046/j.1365-2958.2003.03740.x
– ident: R28
  doi: 10.1128/JB.01887-05
– ident: R10
  doi: 10.1126/science.1249046
– ident: R7
  doi: 10.1016/j.cub.2007.05.017
– ident: R66
  doi: 10.1038/msb.2009.52
– ident: R64
  doi: 10.1371/journal.pcbi.1000873
– ident: R34
  doi: 10.1038/s41467-021-26286-9
– ident: R52
  doi: 10.1128/mSphere.00200-16
– ident: R55
  doi: 10.1002/jobm.201000022
– ident: R42
  doi: 10.1093/bib/bbx108
– ident: R8
  doi: 10.7554/eLife.70931
– ident: R60
  doi: 10.1128/MMBR.00006-12
– ident: R35
  doi: 10.1093/molbev/msac132
– ident: R63
  doi: 10.1371/journal.pcbi.1007727
– ident: R17
  doi: 10.1128/JB.185.6.1757-1767.2003
– ident: R22
  doi: 10.1016/j.mib.2010.01.009
– ident: R44
  doi: 10.1093/bioinformatics/btu031
– ident: R14
  doi: 10.1088/1478-3975/ab8697
– ident: R48
  doi: 10.3390/ijms22073337
– ident: R21
  doi: 10.1016/j.biosystems.2012.08.004
– ident: R32
  doi: 10.3389/fmicb.2014.00643
– ident: R5
  doi: 10.1038/ncomms10105
– ident: R33
  doi: 10.15698/mic2015.07.215
– ident: R11
  doi: 10.1186/jbiol204
– ident: R40
  doi: 10.1186/gb-2009-10-5-r51
– ident: R67
  doi: 10.1128/JB.00744-09
– ident: R15
  doi: 10.1038/ncomms5868
– ident: R53
  doi: 10.1128/JB.00804-15
– ident: R20
  doi: 10.1093/molbev/msz042
– ident: R51
  doi: 10.1111/j.1432-1033.1993.tb18172.x
– ident: R2
  doi: 10.1101/2022.07.12.499626
– ident: R13
  doi: 10.1016/j.tibs.2014.12.004
– ident: R3
  doi: 10.1016/j.mib.2022.02.002
– ident: R6
  doi: 10.1038/nature06847
– ident: R38
  doi: 10.1111/1462-2920.12469
– ident: R58
  doi: 10.1099/mic.0.000163
– ident: R65
  doi: 10.1038/ncomms12307
– ident: R24
  doi: 10.1128/JB.00143-17
– ident: R31
  doi: 10.1128/AAC.05829-11
– ident: R39
  doi: 10.1093/bioinformatics/bty560
– ident: R43
  doi: 10.1093/nar/gkaa913
– ident: R36
  doi: 10.1128/AEM.02041-16
– ident: R61
  doi: 10.1111/j.1574-6968.2000.tb09074.x
– ident: R1
  doi: 10.1038/s41576-018-0069-z
– ident: R62
  doi: 10.1186/s12864-019-5918-4
– ident: R18
  doi: 10.1073/pnas.1702581114
– ident: R54
  doi: 10.1021/ja1059685
– ident: R23
  doi: 10.1146/annurev-micro-102215-095331
– ident: R37
  doi: 10.1038/nprot.2006.24
– ident: R50
  doi: 10.3389/fmicb.2021.707711
– ident: R45
  doi: 10.1093/nar/gkv1189
SSID ssj0014601
Score 4.9303584
Snippet Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can...
SourceID crossref
SourceType Aggregation Database
Subtitle This article is part of the Microbial Evolution collection
Title Transcription factor expression levels and environmental signals constrain transcription factor innovation
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKERIL4lN8ywNMJSEkTkrGCgFVJVgoUreoSR0IKilC6VB-DL-Vu5xxXMhQWKLKil0r93K-2O_uMXbSDvwwTIPUcmJXWsIV8Eq5o6ElwthJvVi0ZVISZO-D7qPoDfxBo_FpsJamRWwnH7V5Jf-xKrSBXTFL9g-W1YNCA_wG-8IVLAzXxWyMC41-7Uk6B2v2E7c1b42REURFmI2ENswQyZ7KuskJRocoEoFSEb-HyrRkqhnD3mVG8SYIUE3ip6pi3TLvMTYbHp6RU0ZseqU03urZ-tBHzvLJeET731lRclS1686QgVN6smyEjrvqpXTrO2M8d7LNbQzXw31ZyrJUntfzkVhHOj62pDaBFDyHpJ60uyZpF4XLy9plAMJesN1rlthI3LvwSCVovtr2j1VQcxPpVD6MoHeEpVOx9xJbxkKLqM1wO9AUIpieQx_0auoqsQJ6n5v_bYQ8RuzSX2dr6qODdwhBG6wh8022QjKksy32MocjTsbnFY444YgDjvgcjrjCEdc44kXdUBWOttnZzXX_qmt9TzV6o3InUd0D8XZYM5_kcpfxFCPSWA5diHKECCD-i30nDdx0GAauTL09drrQkPsL3nfAViv8HLJm8T6VRxAYFvFxaZ0vnxNvcg
link.rule.ids 314,780,784,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcription+factor+expression+levels+and+environmental+signals+constrain+transcription+factor+innovation&rft.jtitle=Microbiology+%28Society+for+General+Microbiology%29&rft.au=Shepherd%2C+Matthew+J.&rft.au=Reynolds%2C+Mitchell&rft.au=Pierce%2C+Aidan+P.&rft.au=Rice%2C+Alan+M.&rft.date=2023-08-16&rft.issn=1350-0872&rft.eissn=1465-2080&rft.volume=169&rft.issue=8&rft_id=info:doi/10.1099%2Fmic.0.001378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1099_mic_0_001378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-0872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-0872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-0872&client=summon