A highly efficient room-temperature NO 2 gas sensor based on three-dimensional core–shell structured CoS 2 bridged Co 3 O 4 @MoS 2

In recent years, two-dimensional transition metal dihalides have emerged as a subject of growing research interest in the field of gas sensing. This heightened attention can be attributed to their notable characteristics of high surface area ratios, customizable electronic properties of the layers,...

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 47; no. 44; pp. 20490 - 20498
Main Authors Chang, Haiyang, Fan, Jiahui, Yang, Kejian, Wang, Cheng, Zhang, Boxuan, Zhang, Wanying, Chen, Xudong
Format Journal Article
LanguageEnglish
Published 13.11.2023
Online AccessGet full text
ISSN1144-0546
1369-9261
DOI10.1039/D3NJ03629D

Cover

Loading…
Abstract In recent years, two-dimensional transition metal dihalides have emerged as a subject of growing research interest in the field of gas sensing. This heightened attention can be attributed to their notable characteristics of high surface area ratios, customizable electronic properties of the layers, and a wide range of catalytic capabilities. These unique features make them promising candidates for gas sensing applications and warrant further investigation and exploration in this area. Practical applications of the original TMD (MoS 2 ) gas sensors are limited by their poor gas sensing performance at room temperature (RT), including less-than-full recovery, long response times, and low response speeds. Addressing these challenges is crucial for improving their real-world usability. In this study, we synthesized three-component heterojunctions (Co 3 O 4 –CoS 2 @MoS 2 ) with a controlled morphology and composition using different mass ratios of raw materials. The Co 3 O 4 –CoS 2 @MoS 2 -2 gas sensor demonstrated exceptional sensitivity to NO 2 gas ( R a / R g = 39.6 in 100 ppm) at room temperature, achieving an ultra-fast response time of merely 3.4 seconds in ambient air. This sensing behavior first benefits from Co 3 O 4 's high specific surface area and abundant oxygen vacancy concentration. The second is the synergistic effect of the heterogeneous structure between MoS 2 and Co 3 O 4 . And finally, the electron holding capacity of the S atom in CoS 2 . The synergistic effect of the three factors promotes the gas-sensing performance of the sensor. The results we obtained show that this approach is viable to improve the sensing performance of metal oxides under RT conditions and can also be scaled up to include other 2D transition metal dihalide-based materials.
AbstractList In recent years, two-dimensional transition metal dihalides have emerged as a subject of growing research interest in the field of gas sensing. This heightened attention can be attributed to their notable characteristics of high surface area ratios, customizable electronic properties of the layers, and a wide range of catalytic capabilities. These unique features make them promising candidates for gas sensing applications and warrant further investigation and exploration in this area. Practical applications of the original TMD (MoS 2 ) gas sensors are limited by their poor gas sensing performance at room temperature (RT), including less-than-full recovery, long response times, and low response speeds. Addressing these challenges is crucial for improving their real-world usability. In this study, we synthesized three-component heterojunctions (Co 3 O 4 –CoS 2 @MoS 2 ) with a controlled morphology and composition using different mass ratios of raw materials. The Co 3 O 4 –CoS 2 @MoS 2 -2 gas sensor demonstrated exceptional sensitivity to NO 2 gas ( R a / R g = 39.6 in 100 ppm) at room temperature, achieving an ultra-fast response time of merely 3.4 seconds in ambient air. This sensing behavior first benefits from Co 3 O 4 's high specific surface area and abundant oxygen vacancy concentration. The second is the synergistic effect of the heterogeneous structure between MoS 2 and Co 3 O 4 . And finally, the electron holding capacity of the S atom in CoS 2 . The synergistic effect of the three factors promotes the gas-sensing performance of the sensor. The results we obtained show that this approach is viable to improve the sensing performance of metal oxides under RT conditions and can also be scaled up to include other 2D transition metal dihalide-based materials.
Author Yang, Kejian
Zhang, Wanying
Wang, Cheng
Fan, Jiahui
Chang, Haiyang
Zhang, Boxuan
Chen, Xudong
Author_xml – sequence: 1
  givenname: Haiyang
  surname: Chang
  fullname: Chang, Haiyang
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China, Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
– sequence: 2
  givenname: Jiahui
  orcidid: 0009-0006-1999-860X
  surname: Fan
  fullname: Fan, Jiahui
  organization: Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
– sequence: 3
  givenname: Kejian
  surname: Yang
  fullname: Yang, Kejian
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
– sequence: 4
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China, Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
– sequence: 5
  givenname: Boxuan
  surname: Zhang
  fullname: Zhang, Boxuan
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
– sequence: 6
  givenname: Wanying
  surname: Zhang
  fullname: Zhang, Wanying
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
– sequence: 7
  givenname: Xudong
  surname: Chen
  fullname: Chen, Xudong
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China, Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
BookMark eNqVj8FKw0AQhhepYFu9-ARzFqK72RjJTWkVEWwPeg_bZJKsbHbLzPbQmwffwDf0SUxEEMSLp_nnZ_6P-Wdi4oNHIU6VPFdSFxdLvXqQOk-L5YGYKp0XSZHmajJolWWJvMzyIzFjfpFSqatcTcXbDXS27dwesGlsZdFHoBD6JGK_RTJxRwirNaTQGgZGz4FgYxhrCB5iR4hJbfvBt8EbB1Ug_Hh95w6dA460q0ZCDYvwNDA2ZOv2awMNa8jg-nH0j8VhYxzjyfeci7O72-fFfVJRYCZsyi3Z3tC-VLIce5Y_PfVcyF_HlY0mDu9EMtb9HfkH_xPpLmqk
CitedBy_id crossref_primary_10_1007_s13391_024_00534_8
crossref_primary_10_1016_j_ccr_2024_215657
crossref_primary_10_1021_acsanm_4c06237
crossref_primary_10_1016_j_jallcom_2024_178327
crossref_primary_10_1016_j_jallcom_2025_179787
Cites_doi 10.1016/j.cej.2013.11.089
10.1021/jacs.0c01649
10.1016/j.jhazmat.2021.127120
10.1016/j.jhazmat.2022.130316
10.1016/j.cej.2021.133778
10.1039/D0TA11392A
10.1016/j.cej.2020.126135
10.1016/j.jhazmat.2020.122191
10.1021/acs.nanolett.5b03009
10.1021/acsami.8b20984
10.1016/j.apcatb.2013.05.056
10.1002/aenm.201700779
10.1016/j.apcatb.2014.08.046
10.1016/j.snb.2021.130073
10.1038/s41467-021-23390-8
10.1021/ja504099w
10.1016/j.snb.2019.126839
10.1039/c2jm33940d
10.1016/j.envres.2015.01.023
10.1016/j.nanoen.2017.08.021
10.1016/j.sna.2023.114517
10.1021/acsami.8b12250
10.1016/j.cej.2019.122159
10.1002/anie.201301622
10.1021/am506545g
10.3390/nano12081300
10.1016/j.snb.2022.131839
10.1038/s41563-021-00960-1
10.1016/j.snb.2021.131068
10.1016/j.snb.2020.129201
10.1016/j.apcatb.2018.12.045
10.1016/j.micromeso.2021.111108
10.1016/j.jhazmat.2021.125830
10.1021/acs.nanolett.6b03458
10.1039/C5NR04670J
10.1016/j.cattod.2020.06.065
10.1021/acsami.0c04048
10.1016/j.jhazmat.2023.131591
10.1039/C4TA05438E
10.1002/adfm.201102860
10.1016/j.snb.2021.130608
10.1016/j.apsusc.2021.150642
10.1016/j.apcatb.2016.06.071
10.3390/s19194265
10.1016/j.snb.2021.130943
10.1039/C5NR07336G
10.1016/j.apcatb.2019.02.014
10.1016/j.snb.2015.08.006
10.1016/j.atmosenv.2022.119158
10.1002/advs.202001178
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/D3NJ03629D
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 20498
ExternalDocumentID 10_1039_D3NJ03629D
GroupedDBID ---
-DZ
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABCQX
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
L7B
M4U
N9A
O9-
P2P
R56
R7B
R7C
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
TN5
TWZ
VH6
YNT
YQT
ID FETCH-crossref_primary_10_1039_D3NJ03629D3
ISSN 1144-0546
IngestDate Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 02:51:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1039_D3NJ03629D3
ORCID 0009-0006-1999-860X
ParticipantIDs crossref_citationtrail_10_1039_D3NJ03629D
crossref_primary_10_1039_D3NJ03629D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-13
PublicationDateYYYYMMDD 2023-11-13
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-13
  day: 13
PublicationDecade 2020
PublicationTitle New journal of chemistry
PublicationYear 2023
References Zhou (D3NJ03629D/cit42/1) 2014; 6
Dai (D3NJ03629D/cit4/1) 2015; 3
Fang (D3NJ03629D/cit11/1) 2022; 352
Quan (D3NJ03629D/cit29/1) 2021; 20
Lu (D3NJ03629D/cit50/1) 2020; 7
Chen (D3NJ03629D/cit49/1) 2021; 321
Xin (D3NJ03629D/cit20/1) 2019; 11
Yuan (D3NJ03629D/cit8/1) 2012; 22
Liu (D3NJ03629D/cit44/1) 2021; 566
Chen (D3NJ03629D/cit15/1) 2016; 16
Liu (D3NJ03629D/cit21/1) 2021; 347
Zhou (D3NJ03629D/cit39/1) 2022; 433
Hsueh (D3NJ03629D/cit13/1) 2021; 329
Zhang (D3NJ03629D/cit32/1) 2020; 391
Ning (D3NJ03629D/cit38/1) 2015; 7
Bai (D3NJ03629D/cit36/1) 2021; 423
Sun (D3NJ03629D/cit9/1) 2021; 9
Liu (D3NJ03629D/cit45/1) 2015; 164
Chen (D3NJ03629D/cit30/1) 2020; 142
Dun (D3NJ03629D/cit26/1) 2019; 298
Park (D3NJ03629D/cit12/1) 2016; 222
Wang (D3NJ03629D/cit23/1) 2023; 359
Shu (D3NJ03629D/cit19/1) 2016; 8
Liang (D3NJ03629D/cit41/1) 2023; 433
Huang (D3NJ03629D/cit28/1) 2021; 12
Wang (D3NJ03629D/cit6/1) 2013; 52
Shi (D3NJ03629D/cit35/1) 2014; 240
Yang (D3NJ03629D/cit40/1) 2023; 455
Zhu (D3NJ03629D/cit25/1) 2019; 378
Chen (D3NJ03629D/cit27/1) 2017; 7
Gao (D3NJ03629D/cit2/1) 2021; 342
Bai (D3NJ03629D/cit22/1) 2021; 416
Qin (D3NJ03629D/cit10/1) 2022; 351
Zhang (D3NJ03629D/cit17/1) 2015; 15
Muthurasu (D3NJ03629D/cit34/1) 2019; 248
Faber (D3NJ03629D/cit14/1) 2014; 136
Bai (D3NJ03629D/cit5/1) 2013; 142–143
Gupta (D3NJ03629D/cit16/1) 2017; 41
Ke (D3NJ03629D/cit47/1) 2017; 200
Chen (D3NJ03629D/cit46/1) 2019; 244
Wang (D3NJ03629D/cit37/1) 2020; 12
Zhang (D3NJ03629D/cit48/1) 2020; 401
Cibella (D3NJ03629D/cit3/1) 2015; 138
Bobkov (D3NJ03629D/cit43/1) 2019; 19
Jin (D3NJ03629D/cit33/1) 2022; 363
Li (D3NJ03629D/cit24/1) 2022; 12
Wang (D3NJ03629D/cit7/1) 2012; 22
Zhan (D3NJ03629D/cit1/1) 2022; 283
Cho (D3NJ03629D/cit18/1) 2018; 10
Plais (D3NJ03629D/cit31/1) 2021; 377
References_xml – volume: 240
  start-page: 264
  year: 2014
  ident: D3NJ03629D/cit35/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.11.089
– volume: 142
  start-page: 7161
  year: 2020
  ident: D3NJ03629D/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01649
– volume: 423
  start-page: 127120
  year: 2021
  ident: D3NJ03629D/cit36/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127120
– volume: 433
  start-page: 130316
  year: 2023
  ident: D3NJ03629D/cit41/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.130316
– volume: 433
  start-page: 133778
  year: 2022
  ident: D3NJ03629D/cit39/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133778
– volume: 9
  start-page: 6335
  year: 2021
  ident: D3NJ03629D/cit9/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11392A
– volume: 401
  start-page: 126135
  year: 2020
  ident: D3NJ03629D/cit48/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126135
– volume: 391
  start-page: 122191
  year: 2020
  ident: D3NJ03629D/cit32/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122191
– volume: 15
  start-page: 7002
  year: 2015
  ident: D3NJ03629D/cit17/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03009
– volume: 11
  start-page: 9438
  year: 2019
  ident: D3NJ03629D/cit20/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20984
– volume: 142–143
  start-page: 677
  year: 2013
  ident: D3NJ03629D/cit5/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2013.05.056
– volume: 7
  start-page: 1700779
  year: 2017
  ident: D3NJ03629D/cit27/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700779
– volume: 164
  start-page: 1
  year: 2015
  ident: D3NJ03629D/cit45/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.08.046
– volume: 342
  start-page: 130073
  year: 2021
  ident: D3NJ03629D/cit2/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.130073
– volume: 12
  start-page: 3036
  year: 2021
  ident: D3NJ03629D/cit28/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23390-8
– volume: 136
  start-page: 10053
  year: 2014
  ident: D3NJ03629D/cit14/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504099w
– volume: 298
  start-page: 126839
  year: 2019
  ident: D3NJ03629D/cit26/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2019.126839
– volume: 22
  start-page: 23310
  year: 2012
  ident: D3NJ03629D/cit7/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33940d
– volume: 138
  start-page: 8
  year: 2015
  ident: D3NJ03629D/cit3/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.01.023
– volume: 41
  start-page: 49
  year: 2017
  ident: D3NJ03629D/cit16/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.021
– volume: 359
  start-page: 114517
  year: 2023
  ident: D3NJ03629D/cit23/1
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2023.114517
– volume: 10
  start-page: 35972
  year: 2018
  ident: D3NJ03629D/cit18/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12250
– volume: 378
  start-page: 122159
  year: 2019
  ident: D3NJ03629D/cit25/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122159
– volume: 52
  start-page: 6417
  year: 2013
  ident: D3NJ03629D/cit6/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301622
– volume: 6
  start-page: 21534
  year: 2014
  ident: D3NJ03629D/cit42/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am506545g
– volume: 12
  start-page: 1300
  issue: 8
  year: 2022
  ident: D3NJ03629D/cit24/1
  publication-title: Nanomaterials
  doi: 10.3390/nano12081300
– volume: 363
  start-page: 131839
  year: 2022
  ident: D3NJ03629D/cit33/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2022.131839
– volume: 20
  start-page: 1100
  year: 2021
  ident: D3NJ03629D/cit29/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-00960-1
– volume: 352
  start-page: 131068
  year: 2022
  ident: D3NJ03629D/cit11/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.131068
– volume: 329
  start-page: 129201
  year: 2021
  ident: D3NJ03629D/cit13/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.129201
– volume: 244
  start-page: 996
  year: 2019
  ident: D3NJ03629D/cit46/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.12.045
– volume: 321
  start-page: 111108
  year: 2021
  ident: D3NJ03629D/cit49/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111108
– volume: 416
  start-page: 125830
  year: 2021
  ident: D3NJ03629D/cit22/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125830
– volume: 16
  start-page: 7588
  year: 2016
  ident: D3NJ03629D/cit15/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03458
– volume: 7
  start-page: 15734
  year: 2015
  ident: D3NJ03629D/cit38/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR04670J
– volume: 377
  start-page: 114
  year: 2021
  ident: D3NJ03629D/cit31/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.06.065
– volume: 12
  start-page: 33325
  year: 2020
  ident: D3NJ03629D/cit37/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04048
– volume: 455
  start-page: 131591
  year: 2023
  ident: D3NJ03629D/cit40/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.131591
– volume: 3
  start-page: 3372
  year: 2015
  ident: D3NJ03629D/cit4/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05438E
– volume: 22
  start-page: 2560
  year: 2012
  ident: D3NJ03629D/cit8/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102860
– volume: 347
  start-page: 130608
  year: 2021
  ident: D3NJ03629D/cit21/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.130608
– volume: 566
  start-page: 150642
  year: 2021
  ident: D3NJ03629D/cit44/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150642
– volume: 200
  start-page: 47
  year: 2017
  ident: D3NJ03629D/cit47/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.06.071
– volume: 19
  start-page: 4265
  year: 2019
  ident: D3NJ03629D/cit43/1
  publication-title: Sensors
  doi: 10.3390/s19194265
– volume: 351
  start-page: 130943
  year: 2022
  ident: D3NJ03629D/cit10/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.130943
– volume: 8
  start-page: 3049
  year: 2016
  ident: D3NJ03629D/cit19/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR07336G
– volume: 248
  start-page: 202
  year: 2019
  ident: D3NJ03629D/cit34/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.02.014
– volume: 222
  start-page: 1193
  year: 2016
  ident: D3NJ03629D/cit12/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.08.006
– volume: 283
  start-page: 119158
  year: 2022
  ident: D3NJ03629D/cit1/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119158
– volume: 7
  start-page: 2001178
  year: 2020
  ident: D3NJ03629D/cit50/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001178
SSID ssj0011761
Score 4.8034024
Snippet In recent years, two-dimensional transition metal dihalides have emerged as a subject of growing research interest in the field of gas sensing. This heightened...
SourceID crossref
SourceType Index Database
Enrichment Source
StartPage 20490
Title A highly efficient room-temperature NO 2 gas sensor based on three-dimensional core–shell structured CoS 2 bridged Co 3 O 4 @MoS 2
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9EAvqD-gFmg1UuEAq20d7zqxb0Rpq7Q0yYEgeovWjk2DqgSR5tCeOPAGfQ8eiidhxru2V20OgYvlHXsnsufTzmxm5jNjb0KUN2SciiyRUqjQy0SsAi10hPIwiFtZXkTT6ze7n9X5ZXBZq_12qpYWN_Fhcre0r-R_rIoytCt1yf6DZUulKMBztC8e0cJ4XMnGbU5sw9e3VJUxyTsbOQXCgvimLFky7w-4z7_qOZ_jhpVKM9FtjU2K4EeaijGx-xtmDk6MlkXxg5xThSg39LILKlLvzD6hJtPgRSMu-YAr_lZ5PbriRrlUNOlQUiTFR-WcWgKzxHT15FZb35kzQppOkYm-WkzK9cje-zH95kD5i5V2rlI73_514Uvq4TOdp3a1xd2cwJjRcmEbmWxGIvINQ3uxRBtSTgtFpdwFlzKXjvemcbjUNXiSmFWPZf-cnHZ0XDnAIun_wC-W1Yp5nl5Go2ruE7bm47bEq7O19snw7KLMWzVahqG3eLCCEFdGR9VsJwRyYpnhBntmNyHQNojaZLV0usWedgozbbNfbTDIghJZ8BBZ0B-AD4gsMMiCHFkwm8IjZAEh68_P-xxTUGEKEFOow2IKRyBhAAo-9Ej-nL0_PRl2uqJ4jNF3Q40yevyq5AtWn86m6Q6DLGvqwMvGjVBlKghbYeDpyNdJpFpeljTULntXKkwsQz19KOV6idpddrDCj79c6a5XbL1C52tWx7eQ7mGoeRPvW_v-BcqHgF4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+efficient+room-temperature+NO+2+gas+sensor+based+on+three-dimensional+core%E2%80%93shell+structured+CoS+2+bridged+Co+3+O+4+%40MoS+2&rft.jtitle=New+journal+of+chemistry&rft.au=Chang%2C+Haiyang&rft.au=Fan%2C+Jiahui&rft.au=Yang%2C+Kejian&rft.au=Wang%2C+Cheng&rft.date=2023-11-13&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=47&rft.issue=44&rft.spage=20490&rft.epage=20498&rft_id=info:doi/10.1039%2FD3NJ03629D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3NJ03629D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon