A highly efficient room-temperature NO 2 gas sensor based on three-dimensional core–shell structured CoS 2 bridged Co 3 O 4 @MoS 2
In recent years, two-dimensional transition metal dihalides have emerged as a subject of growing research interest in the field of gas sensing. This heightened attention can be attributed to their notable characteristics of high surface area ratios, customizable electronic properties of the layers,...
Saved in:
Published in | New journal of chemistry Vol. 47; no. 44; pp. 20490 - 20498 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
13.11.2023
|
Online Access | Get full text |
ISSN | 1144-0546 1369-9261 |
DOI | 10.1039/D3NJ03629D |
Cover
Loading…
Abstract | In recent years, two-dimensional transition metal dihalides have emerged as a subject of growing research interest in the field of gas sensing. This heightened attention can be attributed to their notable characteristics of high surface area ratios, customizable electronic properties of the layers, and a wide range of catalytic capabilities. These unique features make them promising candidates for gas sensing applications and warrant further investigation and exploration in this area. Practical applications of the original TMD (MoS
2
) gas sensors are limited by their poor gas sensing performance at room temperature (RT), including less-than-full recovery, long response times, and low response speeds. Addressing these challenges is crucial for improving their real-world usability. In this study, we synthesized three-component heterojunctions (Co
3
O
4
–CoS
2
@MoS
2
) with a controlled morphology and composition using different mass ratios of raw materials. The Co
3
O
4
–CoS
2
@MoS
2
-2 gas sensor demonstrated exceptional sensitivity to NO
2
gas (
R
a
/
R
g
= 39.6 in 100 ppm) at room temperature, achieving an ultra-fast response time of merely 3.4 seconds in ambient air. This sensing behavior first benefits from Co
3
O
4
's high specific surface area and abundant oxygen vacancy concentration. The second is the synergistic effect of the heterogeneous structure between MoS
2
and Co
3
O
4
. And finally, the electron holding capacity of the S atom in CoS
2
. The synergistic effect of the three factors promotes the gas-sensing performance of the sensor. The results we obtained show that this approach is viable to improve the sensing performance of metal oxides under RT conditions and can also be scaled up to include other 2D transition metal dihalide-based materials. |
---|---|
AbstractList | In recent years, two-dimensional transition metal dihalides have emerged as a subject of growing research interest in the field of gas sensing. This heightened attention can be attributed to their notable characteristics of high surface area ratios, customizable electronic properties of the layers, and a wide range of catalytic capabilities. These unique features make them promising candidates for gas sensing applications and warrant further investigation and exploration in this area. Practical applications of the original TMD (MoS
2
) gas sensors are limited by their poor gas sensing performance at room temperature (RT), including less-than-full recovery, long response times, and low response speeds. Addressing these challenges is crucial for improving their real-world usability. In this study, we synthesized three-component heterojunctions (Co
3
O
4
–CoS
2
@MoS
2
) with a controlled morphology and composition using different mass ratios of raw materials. The Co
3
O
4
–CoS
2
@MoS
2
-2 gas sensor demonstrated exceptional sensitivity to NO
2
gas (
R
a
/
R
g
= 39.6 in 100 ppm) at room temperature, achieving an ultra-fast response time of merely 3.4 seconds in ambient air. This sensing behavior first benefits from Co
3
O
4
's high specific surface area and abundant oxygen vacancy concentration. The second is the synergistic effect of the heterogeneous structure between MoS
2
and Co
3
O
4
. And finally, the electron holding capacity of the S atom in CoS
2
. The synergistic effect of the three factors promotes the gas-sensing performance of the sensor. The results we obtained show that this approach is viable to improve the sensing performance of metal oxides under RT conditions and can also be scaled up to include other 2D transition metal dihalide-based materials. |
Author | Yang, Kejian Zhang, Wanying Wang, Cheng Fan, Jiahui Chang, Haiyang Zhang, Boxuan Chen, Xudong |
Author_xml | – sequence: 1 givenname: Haiyang surname: Chang fullname: Chang, Haiyang organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China, Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China – sequence: 2 givenname: Jiahui orcidid: 0009-0006-1999-860X surname: Fan fullname: Fan, Jiahui organization: Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China – sequence: 3 givenname: Kejian surname: Yang fullname: Yang, Kejian organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China – sequence: 4 givenname: Cheng surname: Wang fullname: Wang, Cheng organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China, Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China – sequence: 5 givenname: Boxuan surname: Zhang fullname: Zhang, Boxuan organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China – sequence: 6 givenname: Wanying surname: Zhang fullname: Zhang, Wanying organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China – sequence: 7 givenname: Xudong surname: Chen fullname: Chen, Xudong organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China, Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China |
BookMark | eNqVj8FKw0AQhhepYFu9-ARzFqK72RjJTWkVEWwPeg_bZJKsbHbLzPbQmwffwDf0SUxEEMSLp_nnZ_6P-Wdi4oNHIU6VPFdSFxdLvXqQOk-L5YGYKp0XSZHmajJolWWJvMzyIzFjfpFSqatcTcXbDXS27dwesGlsZdFHoBD6JGK_RTJxRwirNaTQGgZGz4FgYxhrCB5iR4hJbfvBt8EbB1Ug_Hh95w6dA460q0ZCDYvwNDA2ZOv2awMNa8jg-nH0j8VhYxzjyfeci7O72-fFfVJRYCZsyi3Z3tC-VLIce5Y_PfVcyF_HlY0mDu9EMtb9HfkH_xPpLmqk |
CitedBy_id | crossref_primary_10_1007_s13391_024_00534_8 crossref_primary_10_1016_j_ccr_2024_215657 crossref_primary_10_1021_acsanm_4c06237 crossref_primary_10_1016_j_jallcom_2024_178327 crossref_primary_10_1016_j_jallcom_2025_179787 |
Cites_doi | 10.1016/j.cej.2013.11.089 10.1021/jacs.0c01649 10.1016/j.jhazmat.2021.127120 10.1016/j.jhazmat.2022.130316 10.1016/j.cej.2021.133778 10.1039/D0TA11392A 10.1016/j.cej.2020.126135 10.1016/j.jhazmat.2020.122191 10.1021/acs.nanolett.5b03009 10.1021/acsami.8b20984 10.1016/j.apcatb.2013.05.056 10.1002/aenm.201700779 10.1016/j.apcatb.2014.08.046 10.1016/j.snb.2021.130073 10.1038/s41467-021-23390-8 10.1021/ja504099w 10.1016/j.snb.2019.126839 10.1039/c2jm33940d 10.1016/j.envres.2015.01.023 10.1016/j.nanoen.2017.08.021 10.1016/j.sna.2023.114517 10.1021/acsami.8b12250 10.1016/j.cej.2019.122159 10.1002/anie.201301622 10.1021/am506545g 10.3390/nano12081300 10.1016/j.snb.2022.131839 10.1038/s41563-021-00960-1 10.1016/j.snb.2021.131068 10.1016/j.snb.2020.129201 10.1016/j.apcatb.2018.12.045 10.1016/j.micromeso.2021.111108 10.1016/j.jhazmat.2021.125830 10.1021/acs.nanolett.6b03458 10.1039/C5NR04670J 10.1016/j.cattod.2020.06.065 10.1021/acsami.0c04048 10.1016/j.jhazmat.2023.131591 10.1039/C4TA05438E 10.1002/adfm.201102860 10.1016/j.snb.2021.130608 10.1016/j.apsusc.2021.150642 10.1016/j.apcatb.2016.06.071 10.3390/s19194265 10.1016/j.snb.2021.130943 10.1039/C5NR07336G 10.1016/j.apcatb.2019.02.014 10.1016/j.snb.2015.08.006 10.1016/j.atmosenv.2022.119158 10.1002/advs.202001178 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/D3NJ03629D |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 20498 |
ExternalDocumentID | 10_1039_D3NJ03629D |
GroupedDBID | --- -DZ -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABCQX ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L7B M4U N9A O9- P2P R56 R7B R7C R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 YNT YQT |
ID | FETCH-crossref_primary_10_1039_D3NJ03629D3 |
ISSN | 1144-0546 |
IngestDate | Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 02:51:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1039_D3NJ03629D3 |
ORCID | 0009-0006-1999-860X |
ParticipantIDs | crossref_citationtrail_10_1039_D3NJ03629D crossref_primary_10_1039_D3NJ03629D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-13 |
PublicationDateYYYYMMDD | 2023-11-13 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | New journal of chemistry |
PublicationYear | 2023 |
References | Zhou (D3NJ03629D/cit42/1) 2014; 6 Dai (D3NJ03629D/cit4/1) 2015; 3 Fang (D3NJ03629D/cit11/1) 2022; 352 Quan (D3NJ03629D/cit29/1) 2021; 20 Lu (D3NJ03629D/cit50/1) 2020; 7 Chen (D3NJ03629D/cit49/1) 2021; 321 Xin (D3NJ03629D/cit20/1) 2019; 11 Yuan (D3NJ03629D/cit8/1) 2012; 22 Liu (D3NJ03629D/cit44/1) 2021; 566 Chen (D3NJ03629D/cit15/1) 2016; 16 Liu (D3NJ03629D/cit21/1) 2021; 347 Zhou (D3NJ03629D/cit39/1) 2022; 433 Hsueh (D3NJ03629D/cit13/1) 2021; 329 Zhang (D3NJ03629D/cit32/1) 2020; 391 Ning (D3NJ03629D/cit38/1) 2015; 7 Bai (D3NJ03629D/cit36/1) 2021; 423 Sun (D3NJ03629D/cit9/1) 2021; 9 Liu (D3NJ03629D/cit45/1) 2015; 164 Chen (D3NJ03629D/cit30/1) 2020; 142 Dun (D3NJ03629D/cit26/1) 2019; 298 Park (D3NJ03629D/cit12/1) 2016; 222 Wang (D3NJ03629D/cit23/1) 2023; 359 Shu (D3NJ03629D/cit19/1) 2016; 8 Liang (D3NJ03629D/cit41/1) 2023; 433 Huang (D3NJ03629D/cit28/1) 2021; 12 Wang (D3NJ03629D/cit6/1) 2013; 52 Shi (D3NJ03629D/cit35/1) 2014; 240 Yang (D3NJ03629D/cit40/1) 2023; 455 Zhu (D3NJ03629D/cit25/1) 2019; 378 Chen (D3NJ03629D/cit27/1) 2017; 7 Gao (D3NJ03629D/cit2/1) 2021; 342 Bai (D3NJ03629D/cit22/1) 2021; 416 Qin (D3NJ03629D/cit10/1) 2022; 351 Zhang (D3NJ03629D/cit17/1) 2015; 15 Muthurasu (D3NJ03629D/cit34/1) 2019; 248 Faber (D3NJ03629D/cit14/1) 2014; 136 Bai (D3NJ03629D/cit5/1) 2013; 142–143 Gupta (D3NJ03629D/cit16/1) 2017; 41 Ke (D3NJ03629D/cit47/1) 2017; 200 Chen (D3NJ03629D/cit46/1) 2019; 244 Wang (D3NJ03629D/cit37/1) 2020; 12 Zhang (D3NJ03629D/cit48/1) 2020; 401 Cibella (D3NJ03629D/cit3/1) 2015; 138 Bobkov (D3NJ03629D/cit43/1) 2019; 19 Jin (D3NJ03629D/cit33/1) 2022; 363 Li (D3NJ03629D/cit24/1) 2022; 12 Wang (D3NJ03629D/cit7/1) 2012; 22 Zhan (D3NJ03629D/cit1/1) 2022; 283 Cho (D3NJ03629D/cit18/1) 2018; 10 Plais (D3NJ03629D/cit31/1) 2021; 377 |
References_xml | – volume: 240 start-page: 264 year: 2014 ident: D3NJ03629D/cit35/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.11.089 – volume: 142 start-page: 7161 year: 2020 ident: D3NJ03629D/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01649 – volume: 423 start-page: 127120 year: 2021 ident: D3NJ03629D/cit36/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127120 – volume: 433 start-page: 130316 year: 2023 ident: D3NJ03629D/cit41/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130316 – volume: 433 start-page: 133778 year: 2022 ident: D3NJ03629D/cit39/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133778 – volume: 9 start-page: 6335 year: 2021 ident: D3NJ03629D/cit9/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11392A – volume: 401 start-page: 126135 year: 2020 ident: D3NJ03629D/cit48/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126135 – volume: 391 start-page: 122191 year: 2020 ident: D3NJ03629D/cit32/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122191 – volume: 15 start-page: 7002 year: 2015 ident: D3NJ03629D/cit17/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03009 – volume: 11 start-page: 9438 year: 2019 ident: D3NJ03629D/cit20/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20984 – volume: 142–143 start-page: 677 year: 2013 ident: D3NJ03629D/cit5/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.05.056 – volume: 7 start-page: 1700779 year: 2017 ident: D3NJ03629D/cit27/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700779 – volume: 164 start-page: 1 year: 2015 ident: D3NJ03629D/cit45/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.08.046 – volume: 342 start-page: 130073 year: 2021 ident: D3NJ03629D/cit2/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.130073 – volume: 12 start-page: 3036 year: 2021 ident: D3NJ03629D/cit28/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23390-8 – volume: 136 start-page: 10053 year: 2014 ident: D3NJ03629D/cit14/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504099w – volume: 298 start-page: 126839 year: 2019 ident: D3NJ03629D/cit26/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2019.126839 – volume: 22 start-page: 23310 year: 2012 ident: D3NJ03629D/cit7/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm33940d – volume: 138 start-page: 8 year: 2015 ident: D3NJ03629D/cit3/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2015.01.023 – volume: 41 start-page: 49 year: 2017 ident: D3NJ03629D/cit16/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.021 – volume: 359 start-page: 114517 year: 2023 ident: D3NJ03629D/cit23/1 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2023.114517 – volume: 10 start-page: 35972 year: 2018 ident: D3NJ03629D/cit18/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12250 – volume: 378 start-page: 122159 year: 2019 ident: D3NJ03629D/cit25/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122159 – volume: 52 start-page: 6417 year: 2013 ident: D3NJ03629D/cit6/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301622 – volume: 6 start-page: 21534 year: 2014 ident: D3NJ03629D/cit42/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am506545g – volume: 12 start-page: 1300 issue: 8 year: 2022 ident: D3NJ03629D/cit24/1 publication-title: Nanomaterials doi: 10.3390/nano12081300 – volume: 363 start-page: 131839 year: 2022 ident: D3NJ03629D/cit33/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2022.131839 – volume: 20 start-page: 1100 year: 2021 ident: D3NJ03629D/cit29/1 publication-title: Nat. Mater. doi: 10.1038/s41563-021-00960-1 – volume: 352 start-page: 131068 year: 2022 ident: D3NJ03629D/cit11/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.131068 – volume: 329 start-page: 129201 year: 2021 ident: D3NJ03629D/cit13/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2020.129201 – volume: 244 start-page: 996 year: 2019 ident: D3NJ03629D/cit46/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.12.045 – volume: 321 start-page: 111108 year: 2021 ident: D3NJ03629D/cit49/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111108 – volume: 416 start-page: 125830 year: 2021 ident: D3NJ03629D/cit22/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125830 – volume: 16 start-page: 7588 year: 2016 ident: D3NJ03629D/cit15/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03458 – volume: 7 start-page: 15734 year: 2015 ident: D3NJ03629D/cit38/1 publication-title: Nanoscale doi: 10.1039/C5NR04670J – volume: 377 start-page: 114 year: 2021 ident: D3NJ03629D/cit31/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2020.06.065 – volume: 12 start-page: 33325 year: 2020 ident: D3NJ03629D/cit37/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04048 – volume: 455 start-page: 131591 year: 2023 ident: D3NJ03629D/cit40/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.131591 – volume: 3 start-page: 3372 year: 2015 ident: D3NJ03629D/cit4/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05438E – volume: 22 start-page: 2560 year: 2012 ident: D3NJ03629D/cit8/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102860 – volume: 347 start-page: 130608 year: 2021 ident: D3NJ03629D/cit21/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.130608 – volume: 566 start-page: 150642 year: 2021 ident: D3NJ03629D/cit44/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150642 – volume: 200 start-page: 47 year: 2017 ident: D3NJ03629D/cit47/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.06.071 – volume: 19 start-page: 4265 year: 2019 ident: D3NJ03629D/cit43/1 publication-title: Sensors doi: 10.3390/s19194265 – volume: 351 start-page: 130943 year: 2022 ident: D3NJ03629D/cit10/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.130943 – volume: 8 start-page: 3049 year: 2016 ident: D3NJ03629D/cit19/1 publication-title: Nanoscale doi: 10.1039/C5NR07336G – volume: 248 start-page: 202 year: 2019 ident: D3NJ03629D/cit34/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.02.014 – volume: 222 start-page: 1193 year: 2016 ident: D3NJ03629D/cit12/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.08.006 – volume: 283 start-page: 119158 year: 2022 ident: D3NJ03629D/cit1/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119158 – volume: 7 start-page: 2001178 year: 2020 ident: D3NJ03629D/cit50/1 publication-title: Adv. Sci. doi: 10.1002/advs.202001178 |
SSID | ssj0011761 |
Score | 4.8034024 |
Snippet | In recent years, two-dimensional transition metal dihalides have emerged as a subject of growing research interest in the field of gas sensing. This heightened... |
SourceID | crossref |
SourceType | Index Database Enrichment Source |
StartPage | 20490 |
Title | A highly efficient room-temperature NO 2 gas sensor based on three-dimensional core–shell structured CoS 2 bridged Co 3 O 4 @MoS 2 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9EAvqD-gFmg1UuEAq20d7zqxb0Rpq7Q0yYEgeovWjk2DqgSR5tCeOPAGfQ8eiidhxru2V20OgYvlHXsnsufTzmxm5jNjb0KUN2SciiyRUqjQy0SsAi10hPIwiFtZXkTT6ze7n9X5ZXBZq_12qpYWN_Fhcre0r-R_rIoytCt1yf6DZUulKMBztC8e0cJ4XMnGbU5sw9e3VJUxyTsbOQXCgvimLFky7w-4z7_qOZ_jhpVKM9FtjU2K4EeaijGx-xtmDk6MlkXxg5xThSg39LILKlLvzD6hJtPgRSMu-YAr_lZ5PbriRrlUNOlQUiTFR-WcWgKzxHT15FZb35kzQppOkYm-WkzK9cje-zH95kD5i5V2rlI73_514Uvq4TOdp3a1xd2cwJjRcmEbmWxGIvINQ3uxRBtSTgtFpdwFlzKXjvemcbjUNXiSmFWPZf-cnHZ0XDnAIun_wC-W1Yp5nl5Go2ruE7bm47bEq7O19snw7KLMWzVahqG3eLCCEFdGR9VsJwRyYpnhBntmNyHQNojaZLV0usWedgozbbNfbTDIghJZ8BBZ0B-AD4gsMMiCHFkwm8IjZAEh68_P-xxTUGEKEFOow2IKRyBhAAo-9Ej-nL0_PRl2uqJ4jNF3Q40yevyq5AtWn86m6Q6DLGvqwMvGjVBlKghbYeDpyNdJpFpeljTULntXKkwsQz19KOV6idpddrDCj79c6a5XbL1C52tWx7eQ7mGoeRPvW_v-BcqHgF4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+efficient+room-temperature+NO+2+gas+sensor+based+on+three-dimensional+core%E2%80%93shell+structured+CoS+2+bridged+Co+3+O+4+%40MoS+2&rft.jtitle=New+journal+of+chemistry&rft.au=Chang%2C+Haiyang&rft.au=Fan%2C+Jiahui&rft.au=Yang%2C+Kejian&rft.au=Wang%2C+Cheng&rft.date=2023-11-13&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=47&rft.issue=44&rft.spage=20490&rft.epage=20498&rft_id=info:doi/10.1039%2FD3NJ03629D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3NJ03629D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |