Visible light-responsive radial TiO 2 mesocrystal photocatalysts for the oxidation of organics
Radial TiO 2 mesocrystals (rad-TiO 2 MCs), the so-called “sea urchin-like microspheres”, usually consisting of rutile TiO 2 nanorods with a length of several microns and a diameter of several tens of nanometers, are very promising photocatalyst materials due to the efficient light harvesting ability...
Saved in:
Published in | Catalysis science & technology Vol. 13; no. 16; pp. 4581 - 4589 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
14.08.2023
|
Online Access | Get full text |
ISSN | 2044-4753 2044-4761 |
DOI | 10.1039/D3CY00195D |
Cover
Abstract | Radial TiO
2
mesocrystals (rad-TiO
2
MCs), the so-called “sea urchin-like microspheres”, usually consisting of rutile TiO
2
nanorods with a length of several microns and a diameter of several tens of nanometers, are very promising photocatalyst materials due to the efficient light harvesting ability, large surface area, and easy separation from reaction solution. The key to actually making use of rad-TiO
2
MCs with a high potential as the base material of practical photocatalysts is the reduction of synthesis temperature and time and the simultaneous impartation of the high activity for multiple electron-oxygen reduction reaction (ORR) and visible-light responsiveness to them. This minireview highlights recent progress on the hot topics through the surface modification by Au nanoparticles (Au/rad-TiO
2
MCs) and extremely small iron oxide clusters (FeO
x
/rad-TiO
2
MCs) acting as both photosensitizer (or oxidation sites) and electrocatalyst for multiple electron-ORR (or reduction sites). Subsequent to the introduction, the synthesis of rad-TiO
2
MCs by a seed-assisted hydrothermal method is described. The fundamental parts deal with the optical and multiple electron-ORR properties of Au/rad-TiO
2
MCs and FeO
x
/rad-TiO
2
MCs and the redox reaction site separation mechanism unique to the 3D structure. Then, the applications of the rad-TiO
2
MC-based photocatalysts to the oxidation of organics and other important reactions are explored. Finally, the conclusions are summarized with the advantages of rad-TiO
2
MCs over the conventional TiO
2
particles clarified, and some future subjects are described. |
---|---|
AbstractList | Radial TiO
2
mesocrystals (rad-TiO
2
MCs), the so-called “sea urchin-like microspheres”, usually consisting of rutile TiO
2
nanorods with a length of several microns and a diameter of several tens of nanometers, are very promising photocatalyst materials due to the efficient light harvesting ability, large surface area, and easy separation from reaction solution. The key to actually making use of rad-TiO
2
MCs with a high potential as the base material of practical photocatalysts is the reduction of synthesis temperature and time and the simultaneous impartation of the high activity for multiple electron-oxygen reduction reaction (ORR) and visible-light responsiveness to them. This minireview highlights recent progress on the hot topics through the surface modification by Au nanoparticles (Au/rad-TiO
2
MCs) and extremely small iron oxide clusters (FeO
x
/rad-TiO
2
MCs) acting as both photosensitizer (or oxidation sites) and electrocatalyst for multiple electron-ORR (or reduction sites). Subsequent to the introduction, the synthesis of rad-TiO
2
MCs by a seed-assisted hydrothermal method is described. The fundamental parts deal with the optical and multiple electron-ORR properties of Au/rad-TiO
2
MCs and FeO
x
/rad-TiO
2
MCs and the redox reaction site separation mechanism unique to the 3D structure. Then, the applications of the rad-TiO
2
MC-based photocatalysts to the oxidation of organics and other important reactions are explored. Finally, the conclusions are summarized with the advantages of rad-TiO
2
MCs over the conventional TiO
2
particles clarified, and some future subjects are described. |
Author | Akita, Atsunobu Naya, Shin-ichi Tada, Hiroaki |
Author_xml | – sequence: 1 givenname: Hiroaki orcidid: 0000-0001-8638-0697 surname: Tada fullname: Tada, Hiroaki organization: Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan, Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan – sequence: 2 givenname: Atsunobu surname: Akita fullname: Akita, Atsunobu organization: Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan – sequence: 3 givenname: Shin-ichi surname: Naya fullname: Naya, Shin-ichi organization: Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan |
BookMark | eNqVT8FKw0AQXaSCtfbiF8xZiM4mqZpzq3jzUgQvhnW7aUa2O2FmEfv3RhEF8eJc5r3Hm3m8YzNJnIIxpxbPLVbNxapaPiLaZrE6MNMS67qory7t5BsvqiMzV33BcerG4nU5NU8PpPQcA0Ta9rmQoAMnpdcA4jbkIqzpHkrYBWUve82jMvSc2bsRjlyhY4HcB-A32rhMnIA7YNm6RF5PzGHnoob5156Zs9ub9fKu8MKqErp2ENo52bcW248S7U-Jambwl9lT_ozI4ij-ffKP_--Yl1-3 |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_4c00417 crossref_primary_10_1080_01614940_2024_2446475 crossref_primary_10_15541_jim20240043 crossref_primary_10_1016_j_ijhydene_2024_06_218 crossref_primary_10_1039_D4GC04806G |
Cites_doi | 10.1039/C9DT00891H 10.1016/j.rser.2016.09.134 10.1021/jp003211z 10.1021/cr500201c 10.1016/j.nanoen.2019.05.071 10.1021/cr400629p 10.1016/j.jphotochemrev.2012.10.001 10.1039/b604077b 10.1039/C6CS00195E 10.1021/acs.jpcc.5b07533 10.1002/anie.201007869 10.1039/C2TA00755J 10.1039/C4TA06484D 10.1016/S0926-860X(02)00610-5 10.1016/j.elecom.2006.07.002 10.1021/acs.jpcc.7b04071 10.1007/s11696-019-00749-2 10.1071/CH11451 10.1016/j.jece.2015.10.020 10.1021/ja102651g 10.1016/j.jcat.2018.06.008 10.1021/acs.langmuir.9b03015 10.1021/jp992088c 10.1039/C3CS60188A 10.1021/acs.chemrev.7b00430 10.1039/C4RA04413D 10.1039/D2SC03549A 10.1143/JJAP.44.8269 10.1016/j.matchemphys.2005.11.017 10.1021/acs.jpcc.9b11207 10.1039/c4ta01988a 10.2138/am-2000-0416 10.1016/j.apcatb.2017.03.067 10.1021/jp0144810 10.1021/acs.jpcc.2c08793 10.1016/j.ijhydene.2012.12.077 10.1021/jp4085525 10.1016/j.apcatb.2020.118735 10.1016/j.cplett.2020.138003 10.1246/cl.210269 10.1016/j.jphotochemrev.2013.04.001 10.1039/C4CS00145A 10.1039/c2cs35230c 10.1021/acs.jpclett.1c03360 10.1039/C4TA04227A 10.1039/C9NA00431A 10.1021/acs.jpclett.6b02026 10.1039/C5NR08624H 10.1039/D1DT04020K 10.1021/jp1071956 10.1039/c0ce00851f 10.1016/j.cej.2020.126220 10.1039/D1SC00064K 10.1021/jp064974a 10.1021/ja410994f 10.3390/nano7100310 10.1006/abio.1998.2759 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/D3CY00195D |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2044-4761 |
EndPage | 4589 |
ExternalDocumentID | 10_1039_D3CY00195D |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACAYK ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- OK1 R7G RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH |
ID | FETCH-crossref_primary_10_1039_D3CY00195D3 |
ISSN | 2044-4753 |
IngestDate | Thu Apr 24 23:09:36 EDT 2025 Tue Jul 01 02:28:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1039_D3CY00195D3 |
ORCID | 0000-0001-8638-0697 |
ParticipantIDs | crossref_citationtrail_10_1039_D3CY00195D crossref_primary_10_1039_D3CY00195D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-14 |
PublicationDateYYYYMMDD | 2023-08-14 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Catalysis science & technology |
PublicationYear | 2023 |
References | Kobayashi (D3CY00195D/cit25/1) 2016; 7 Yang (D3CY00195D/cit6/1) 2006; 99 Naya (D3CY00195D/cit46/1) 2018; 364 Zhao (D3CY00195D/cit59/1) 2016; 8 Liu (D3CY00195D/cit19/1) 2014; 2 Zhang (D3CY00195D/cit57/1) 2015; 119 Fabrega (D3CY00195D/cit15/1) 2013; 38 Xiang (D3CY00195D/cit7/1) 2017; 7 Alexeyeva (D3CY00195D/cit23/1) 2006; 8 Akita (D3CY00195D/cit14/1) 2020; 761 Kunimoto (D3CY00195D/cit24/1) 2021; 50 Huang (D3CY00195D/cit16/1) 2017; 121 Yu (D3CY00195D/cit44/1) 2010; 114 Zhang (D3CY00195D/cit37/1) 2018; 118 Tada (D3CY00195D/cit40/1) 2022; 51 Cabral (D3CY00195D/cit55/1) 2015; 3 Li (D3CY00195D/cit34/1) 2016; 45 Luo (D3CY00195D/cit39/1) 2021; 12 Wang (D3CY00195D/cit32/1) 2014; 43 Wu (D3CY00195D/cit8/1) 2019; 62 Onishi (D3CY00195D/cit26/1) 2020; 124 Tada (D3CY00195D/cit38/1) 2019; 48 Yang (D3CY00195D/cit48/1) 2006; 5 Beydoun (D3CY00195D/cit49/1) 2000; 104 Park (D3CY00195D/cit2/1) 2013; 15 Ohno (D3CY00195D/cit56/1) 2003; 244 Nolan (D3CY00195D/cit22/1) 2012; 65 Liu (D3CY00195D/cit58/1) 2019; 73 Zanella (D3CY00195D/cit17/1) 2002; 106 Yang (D3CY00195D/cit28/1) 2006; 5 Sang (D3CY00195D/cit3/1) 2014; 114 Chen (D3CY00195D/cit4/1) 2012; 41 Tada (D3CY00195D/cit20/1) 2011; 50 Yguerabide (D3CY00195D/cit42/1) 1998; 262 Ueno (D3CY00195D/cit30/1) 2013; 15 Liu (D3CY00195D/cit52/1) 2014; 2 Akita (D3CY00195D/cit21/1) 2021; 12 Bian (D3CY00195D/cit5/1) 2014; 136 Guo (D3CY00195D/cit11/1) 2014; 4 Ohno (D3CY00195D/cit9/1) 2001; 105 Zhao (D3CY00195D/cit13/1) 2013; 1 Teranishi (D3CY00195D/cit41/1) 2010; 132 Byl (D3CY00195D/cit47/1) 2006; 110 Naya (D3CY00195D/cit18/1) 2022; 13 Jin (D3CY00195D/cit43/1) 2013; 117 Mamaghani (D3CY00195D/cit53/1) 2020; 269 Lang (D3CY00195D/cit31/1) 2014; 43 Tada (D3CY00195D/cit45/1) 2019; 1 Liu (D3CY00195D/cit54/1) 2020; 402 Fattakhova-Rohlfing (D3CY00195D/cit10/1) 2014; 114 Xu (D3CY00195D/cit50/1) 2000; 85 Sahai (D3CY00195D/cit36/1) 2017; 68 (D3CY00195D/cit27/1) 2000 Akita (D3CY00195D/cit12/1) 2019; 35 Cheng (D3CY00195D/cit33/1) 2015; 3 Hashimoto (D3CY00195D/cit1/1) 2005; 44 Kojima (D3CY00195D/cit29/1) 2023; 127 Lianos (D3CY00195D/cit35/1) 2017; 210 Tian (D3CY00195D/cit51/1) 2011; 13 |
References_xml | – volume: 48 start-page: 6308 year: 2019 ident: D3CY00195D/cit38/1 publication-title: Dalton Trans. doi: 10.1039/C9DT00891H – volume: 68 start-page: 19 year: 2017 ident: D3CY00195D/cit36/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2016.09.134 – volume: 105 start-page: 2417 year: 2001 ident: D3CY00195D/cit9/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp003211z – volume: 114 start-page: 9487 year: 2014 ident: D3CY00195D/cit10/1 publication-title: Chem. Rev. doi: 10.1021/cr500201c – volume: 62 start-page: 791 year: 2019 ident: D3CY00195D/cit8/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.071 – volume: 114 start-page: 9283 year: 2014 ident: D3CY00195D/cit3/1 publication-title: Chem. Rev. doi: 10.1021/cr400629p – volume: 15 start-page: 1 year: 2013 ident: D3CY00195D/cit2/1 publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2012.10.001 – volume: 5 start-page: 808 year: 2006 ident: D3CY00195D/cit28/1 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b604077b – volume: 45 start-page: 3145 year: 2016 ident: D3CY00195D/cit34/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00195E – volume: 119 start-page: 27875 year: 2015 ident: D3CY00195D/cit57/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b07533 – volume: 50 start-page: 3501 year: 2011 ident: D3CY00195D/cit20/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201007869 – volume: 1 start-page: 1659 year: 2013 ident: D3CY00195D/cit13/1 publication-title: J. Mater. Chem. A doi: 10.1039/C2TA00755J – volume: 3 start-page: 5244 year: 2015 ident: D3CY00195D/cit33/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06484D – volume: 244 start-page: 383 year: 2003 ident: D3CY00195D/cit56/1 publication-title: Appl. Catal., A doi: 10.1016/S0926-860X(02)00610-5 – volume: 8 start-page: 1475 year: 2006 ident: D3CY00195D/cit23/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.07.002 – volume: 121 start-page: 18892 year: 2017 ident: D3CY00195D/cit16/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04071 – volume: 73 start-page: 1971 year: 2019 ident: D3CY00195D/cit58/1 publication-title: Chem. Pap. doi: 10.1007/s11696-019-00749-2 – volume: 65 start-page: 624 year: 2012 ident: D3CY00195D/cit22/1 publication-title: Aust. J. Chem. doi: 10.1071/CH11451 – volume: 3 start-page: 2786 year: 2015 ident: D3CY00195D/cit55/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2015.10.020 – volume: 132 start-page: 7850 year: 2010 ident: D3CY00195D/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102651g – volume: 364 start-page: 328 year: 2018 ident: D3CY00195D/cit46/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.06.008 – volume: 35 start-page: 17096 year: 2019 ident: D3CY00195D/cit12/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b03015 – volume: 104 start-page: 4387 year: 2000 ident: D3CY00195D/cit49/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp992088c – volume: 43 start-page: 473 year: 2014 ident: D3CY00195D/cit31/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60188A – volume: 118 start-page: 2927 year: 2018 ident: D3CY00195D/cit37/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00430 – volume: 4 start-page: 37431 year: 2014 ident: D3CY00195D/cit11/1 publication-title: RSC Adv. doi: 10.1039/C4RA04413D – volume: 13 start-page: 12340 year: 2022 ident: D3CY00195D/cit18/1 publication-title: Chem. Sci. doi: 10.1039/D2SC03549A – volume: 44 start-page: 8269 year: 2005 ident: D3CY00195D/cit1/1 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.8269 – volume: 99 start-page: 437 year: 2006 ident: D3CY00195D/cit6/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.11.017 – volume: 124 start-page: 6103 year: 2020 ident: D3CY00195D/cit26/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11207 – volume: 2 start-page: 9875 year: 2014 ident: D3CY00195D/cit19/1 publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01988a – volume: 85 start-page: 543 year: 2000 ident: D3CY00195D/cit50/1 publication-title: Am. Mineral. doi: 10.2138/am-2000-0416 – volume: 210 start-page: 235 year: 2017 ident: D3CY00195D/cit35/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.03.067 – volume: 106 start-page: 7634 year: 2002 ident: D3CY00195D/cit17/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0144810 – volume: 127 start-page: 3478 year: 2023 ident: D3CY00195D/cit29/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.2c08793 – volume: 38 start-page: 2979 year: 2013 ident: D3CY00195D/cit15/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.077 – volume: 5 start-page: 808 year: 2006 ident: D3CY00195D/cit48/1 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b604077b – volume: 117 start-page: 23848 year: 2013 ident: D3CY00195D/cit43/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp4085525 – volume-title: Denki Kagaku Binran year: 2000 ident: D3CY00195D/cit27/1 – volume: 269 start-page: 118735 year: 2020 ident: D3CY00195D/cit53/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118735 – volume: 761 start-page: 138003 year: 2020 ident: D3CY00195D/cit14/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.138003 – volume: 50 start-page: 1589 year: 2021 ident: D3CY00195D/cit24/1 publication-title: Chem. Lett. doi: 10.1246/cl.210269 – volume: 15 start-page: 31 year: 2013 ident: D3CY00195D/cit30/1 publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2013.04.001 – volume: 43 start-page: 7188 year: 2014 ident: D3CY00195D/cit32/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00145A – volume: 41 start-page: 7909 year: 2012 ident: D3CY00195D/cit4/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35230c – volume: 12 start-page: 11717 year: 2021 ident: D3CY00195D/cit21/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03360 – volume: 2 start-page: 20133 year: 2014 ident: D3CY00195D/cit52/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04227A – volume: 1 start-page: 4238 year: 2019 ident: D3CY00195D/cit45/1 publication-title: Nanoscale Adv. doi: 10.1039/C9NA00431A – volume: 7 start-page: 5002 year: 2016 ident: D3CY00195D/cit25/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02026 – volume: 8 start-page: 5313 year: 2016 ident: D3CY00195D/cit59/1 publication-title: Nanoscale doi: 10.1039/C5NR08624H – volume: 51 start-page: 3383 year: 2022 ident: D3CY00195D/cit40/1 publication-title: Dalton Trans. doi: 10.1039/D1DT04020K – volume: 114 start-page: 16481 year: 2010 ident: D3CY00195D/cit44/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp1071956 – volume: 13 start-page: 2994 year: 2011 ident: D3CY00195D/cit51/1 publication-title: CrystEngComm doi: 10.1039/c0ce00851f – volume: 402 start-page: 126220 year: 2020 ident: D3CY00195D/cit54/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126220 – volume: 12 start-page: 5701 year: 2021 ident: D3CY00195D/cit39/1 publication-title: Chem. Sci. doi: 10.1039/D1SC00064K – volume: 110 start-page: 22966 year: 2006 ident: D3CY00195D/cit47/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp064974a – volume: 136 start-page: 458 year: 2014 ident: D3CY00195D/cit5/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410994f – volume: 7 start-page: 310 year: 2017 ident: D3CY00195D/cit7/1 publication-title: Nanomaterials doi: 10.3390/nano7100310 – volume: 262 start-page: 137 year: 1998 ident: D3CY00195D/cit42/1 publication-title: Anal. Biochem. doi: 10.1006/abio.1998.2759 |
SSID | ssj0000491082 |
Score | 4.7061467 |
Snippet | Radial TiO
2
mesocrystals (rad-TiO
2
MCs), the so-called “sea urchin-like microspheres”, usually consisting of rutile TiO
2
nanorods with a length of several... |
SourceID | crossref |
SourceType | Index Database Enrichment Source |
StartPage | 4581 |
Title | Visible light-responsive radial TiO 2 mesocrystal photocatalysts for the oxidation of organics |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4QHvTFeI14SxN9UTIt65DxSBCDxsuD0-iLZOvasIgbGcPbr_ds3coEHtCXhTbQbZwvp6en_b6D0GGdMZebrtAIdU3NELBAccAlaAZlrCpqnLosJgrf3J51Hoyrp9pTofCRZ5dEzgn7nskr-Y9VoQ_sGrNk_2BZNSh0wGewL1zBwnCdy8aPHgC6zyv9RA0kTI-7vvNKaCd8EMu7q-iVNw4WCL-GMe1x0AuiIEnZQHuozhgGn56rYkdZ6Ck9BK9EDKJUvCTjAcWQiaby8pbtJtFoxwsDiE0VnF49GaU2o-HID5yRykHbX0n_fc_zNY_1vHwWQqdxWlWyP6Wz0olhaEZdCv-e8HyfFFtX3pbmUZX3nUZNFm9J52FoNmb6eEJjidRz2npO2I7n45ks272fmODUscNkw502uuPfLqCSXq_H-_ulZtu6vFbpOVg4VUlSaky9WSZuSxun4wFy4UwuLrFW0HK6oMBNiY5VVOD-GlpsZXX81tFLihI8iRIsUYIBJVjHOZTg3yjBgBIMKMEKJTgQOEPJBjq-aFutjpY9YHcgBUy60_8D3URFP_D5FsJECEFY1TFtkxu2ME1GuCAuOG6XOQ5plNGRGpClOvJxOZP-jGHL6GCOm2_P9a0dtDQG3i4qRuGI70FAGDn7qfF-ACKwaLQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible+light-responsive+radial+TiO+2+mesocrystal+photocatalysts+for+the+oxidation+of+organics&rft.jtitle=Catalysis+science+%26+technology&rft.au=Tada%2C+Hiroaki&rft.au=Akita%2C+Atsunobu&rft.au=Naya%2C+Shin-ichi&rft.date=2023-08-14&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=13&rft.issue=16&rft.spage=4581&rft.epage=4589&rft_id=info:doi/10.1039%2FD3CY00195D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CY00195D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon |