Highly efficient and robust aerobic co-oxidation of olefins and aldehydes over CoO x dispersed within hierarchical silicalite-1 zeolites
Epoxide compounds are ultra-important intermediates for manufacturing a variety of chemical products, yet their industrial preparation still suffers from some non-negligible drawbacks. Herein, novel CoO x nanoparticles dispersed within internal channels of hierarchical silicalite-1 zeolite (CoO x /...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 24; no. 16; pp. 6200 - 6214 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
15.08.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Epoxide compounds are ultra-important intermediates for manufacturing a variety of chemical products, yet their industrial preparation still suffers from some non-negligible drawbacks. Herein, novel CoO
x
nanoparticles dispersed within internal channels of hierarchical silicalite-1 zeolite (CoO
x
/
h
-S-1) catalysts, for precisely controllable initiation and transfer of free radical oxygen species under mild conditions, were initially prepared
via
combining silane pore-expansion and metal chelation by N-containing ligands under hydrothermal crystallization conditions. By using multiple characterization methods, it has been confirmed that CoO
x
nanoparticles loaded within zeolite internal channels through Co–O–Si bonds are majorly with the chemical valence state of +2 and a tetrahedral coordination environment, especially low Co loading, favors a small CoO
x
nanoparticle size and a high Co–O–Si proportion. CoO
x
/
h
-S-1 shows promising catalytic activity and lifetime in aerobic co-oxidation of olefin and aldehyde with a broad substrate scope and with high selectivities of epoxide and carboxylic acid, respectively. Remarkably, it has been found that loaded CoO
x
nanoparticles play key roles in enhancing radical initiation and transformation and oxygen transfer of reactive oxygen species (ROS); thus the catalytic performance can be tuned by altering the properties of both the catalyst and substrates. Importantly, these radical processes are profoundly verified by the impact of catalyst properties on the
ci
s–
trans
isomerism of epoxidized methyl oleate (EMO), radical inhibition experiments and radical trapping experiments with EPR spectroscopy analysis. Consequently, this work not only provides an efficient and green epoxidation route over robust catalysts with easily available O
2
as the oxidant, but also systematically reveals the fundamental understanding of the rational design and construction of metal nanoparticles within hierarchical zeolite channels and the corresponding structure–activity relationship for ROS transformation, which benefits the further development of both the catalyst and process technology. |
---|---|
AbstractList | Epoxide compounds are ultra-important intermediates for manufacturing a variety of chemical products, yet their industrial preparation still suffers from some non-negligible drawbacks. Herein, novel CoO
x
nanoparticles dispersed within internal channels of hierarchical silicalite-1 zeolite (CoO
x
/
h
-S-1) catalysts, for precisely controllable initiation and transfer of free radical oxygen species under mild conditions, were initially prepared
via
combining silane pore-expansion and metal chelation by N-containing ligands under hydrothermal crystallization conditions. By using multiple characterization methods, it has been confirmed that CoO
x
nanoparticles loaded within zeolite internal channels through Co–O–Si bonds are majorly with the chemical valence state of +2 and a tetrahedral coordination environment, especially low Co loading, favors a small CoO
x
nanoparticle size and a high Co–O–Si proportion. CoO
x
/
h
-S-1 shows promising catalytic activity and lifetime in aerobic co-oxidation of olefin and aldehyde with a broad substrate scope and with high selectivities of epoxide and carboxylic acid, respectively. Remarkably, it has been found that loaded CoO
x
nanoparticles play key roles in enhancing radical initiation and transformation and oxygen transfer of reactive oxygen species (ROS); thus the catalytic performance can be tuned by altering the properties of both the catalyst and substrates. Importantly, these radical processes are profoundly verified by the impact of catalyst properties on the
ci
s–
trans
isomerism of epoxidized methyl oleate (EMO), radical inhibition experiments and radical trapping experiments with EPR spectroscopy analysis. Consequently, this work not only provides an efficient and green epoxidation route over robust catalysts with easily available O
2
as the oxidant, but also systematically reveals the fundamental understanding of the rational design and construction of metal nanoparticles within hierarchical zeolite channels and the corresponding structure–activity relationship for ROS transformation, which benefits the further development of both the catalyst and process technology. |
Author | Xia, Changjiu Huang, Kaimeng Peng, Xinxin Lin, Min Shu, Xingtian Zhu, Bin Pu, Ning Li, Chenhao |
Author_xml | – sequence: 1 givenname: Chenhao surname: Li fullname: Li, Chenhao organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China – sequence: 2 givenname: Ning surname: Pu fullname: Pu, Ning organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China – sequence: 3 givenname: Kaimeng surname: Huang fullname: Huang, Kaimeng organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China – sequence: 4 givenname: Changjiu orcidid: 0000-0001-9560-7291 surname: Xia fullname: Xia, Changjiu organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China – sequence: 5 givenname: Xinxin orcidid: 0000-0003-0444-7013 surname: Peng fullname: Peng, Xinxin organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China – sequence: 6 givenname: Min surname: Lin fullname: Lin, Min organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China – sequence: 7 givenname: Bin surname: Zhu fullname: Zhu, Bin organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China – sequence: 8 givenname: Xingtian surname: Shu fullname: Shu, Xingtian organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China |
BookMark | eNqVj71OwzAURi1UJFpg4QnujBSwk5KqIwo_3VjYI2Nf44uMXfkaaHgCHpumQiAhFqbvDOcbzkxMYoooxImSZ0o2y_Or-raTsq0vLvfEVM3bplrWCzn55rY-EDPmJymVWrTzqfhY0aMPA6BzZAhjAR0t5PTwwlvELZABk6q0IasLpQjJQQroKPJO1cGiHywypFfM0KU72IAlXmNmtPBGxVMET5h1Np6MDsAUxqWClYJ3TCPxkdh3OjAef-2hOL25vu9WlcmJOaPr15medR56Jfuxtf9pbf4py1-yobJrK1lT-OvyCftBbfc |
CitedBy_id | crossref_primary_10_1002_ange_202500384 crossref_primary_10_1002_adsu_202400719 crossref_primary_10_1002_ange_202419900 crossref_primary_10_1002_anie_202419900 crossref_primary_10_1021_jacs_4c08018 crossref_primary_10_1021_acsami_3c07016 crossref_primary_10_1016_j_bse_2023_104737 crossref_primary_10_1016_j_cej_2024_158279 crossref_primary_10_1016_j_cej_2024_156100 crossref_primary_10_1021_acs_inorgchem_4c03791 crossref_primary_10_1039_D3CY01362F crossref_primary_10_1002_anie_202500384 crossref_primary_10_1021_acs_cgd_3c00014 crossref_primary_10_1021_acssuschemeng_3c07406 crossref_primary_10_1016_j_fuel_2024_133221 |
Cites_doi | 10.1007/s10562-018-2447-8 10.1039/c3ta11038a 10.1002/jrs.4098 10.1002/ange.201703938 10.5897/JPTAF2015.0122 10.1021/acscatal.8b03230 10.1002/poc.610030711 10.1021/ja102778e 10.1021/jacs.7b01422 10.1021/acscatal.8b01871 10.1021/acs.iecr.0c04264 10.1021/acs.chemrev.7b00167 10.1016/j.micromeso.2012.03.045 10.1016/j.apcatb.2019.118049 10.1201/9780203756713 10.1039/D0CY01700K 10.1039/C6CY00309E 10.1021/cs401003d 10.1021/ar3002427 10.1016/j.apcata.2017.12.025 10.1002/chem.201201319 10.1016/j.apcatb.2020.119573 10.1021/acscatal.1c01468 10.1002/adma.201901905 10.1021/jo030345a 10.1016/S0730-725X(96)00180-4 10.1007/s10562-014-1416-0 10.1002/ejlt.201600281 10.1021/acscatal.6b01532 10.1021/acsomega.9b03714 10.1021/acscatal.7b04443 10.1002/adma.201803966 10.1016/j.ejmech.2020.112327 10.1039/C8GC03857K 10.1039/c39920000123 10.1021/acssuschemeng.9b06321 10.1201/9781420030853 10.1016/0040-4020(76)80137-8 10.1016/j.cej.2016.02.072 10.1107/S0909049505012719 10.1039/c39920001578 10.1021/ja7100399 10.1002/ange.200903011 10.1038/s41929-019-0364-x 10.1021/jacs.6b03518 10.1021/j100154a057 10.1016/S0920-5861(01)00466-7 10.1016/j.jcat.2019.01.008 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/D2GC00625A |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 6214 |
ExternalDocumentID | 10_1039_D2GC00625A |
GroupedDBID | 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- P2P R56 R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 |
ID | FETCH-crossref_primary_10_1039_D2GC00625A3 |
ISSN | 1463-9262 |
IngestDate | Thu Apr 24 22:50:29 EDT 2025 Tue Jul 01 01:41:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1039_D2GC00625A3 |
ORCID | 0000-0001-9560-7291 0000-0003-0444-7013 |
ParticipantIDs | crossref_primary_10_1039_D2GC00625A crossref_citationtrail_10_1039_D2GC00625A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2022 |
References | Zhou (D2GC00625A/cit15/1) 2020; 59 Wentzel (D2GC00625A/cit46/1) 2004; 69 Tuel (D2GC00625A/cit33/1) 1992 Büker (D2GC00625A/cit10/1) 2021; 11 Munz (D2GC00625A/cit11/1) 2016; 6 Bryliakov (D2GC00625A/cit16/1) 2017; 117 Atwood (D2GC00625A/cit5/1) 2016 Wu (D2GC00625A/cit14/1) 2019; 8 Madadi (D2GC00625A/cit13/1) 2020; 260 Tuci (D2GC00625A/cit12/1) 2014; 4 Vanoye (D2GC00625A/cit47/1) 2017; 119 Farokhi (D2GC00625A/cit17/1) 2018; 148 Denisov (D2GC00625A/cit45/1) 2005 Huang (D2GC00625A/cit9/1) 2009; 48 Luhmer (D2GC00625A/cit31/1) 1996; 14 Ma (D2GC00625A/cit1/1) 2018; 8 Wang (D2GC00625A/cit24/1) 2019; 31 Jiang (D2GC00625A/cit18/1) 2020; 5 Cywar (D2GC00625A/cit4/1) 2021 Wang (D2GC00625A/cit25/1) 2019; 31 Zhang (D2GC00625A/cit29/1) 2017; 129 Hansen (D2GC00625A/cit23/1) 2013; 46 Wang (D2GC00625A/cit28/1) 2016; 138 Saib (D2GC00625A/cit40/1) 2002; 71 Minkee (D2GC00625A/cit27/1) 2010; 132 Yan (D2GC00625A/cit41/1) 2018; 9 Ravel (D2GC00625A/cit30/1) 2005; 12 Kim (D2GC00625A/cit48/1) 1990; 3 Fan (D2GC00625A/cit34/1) 2008; 130 Chen (D2GC00625A/cit6/1) 2019; 21 Pereira (D2GC00625A/cit19/1) 2018; 8 Gomes (D2GC00625A/cit3/1) 2020; 201 Dryuk (D2GC00625A/cit50/1) 1976; 32 May (D2GC00625A/cit2/1) 2018 Sadowska (D2GC00625A/cit35/1) 2013; 167 Lin (D2GC00625A/cit8/1) 2016; 295 Koirala (D2GC00625A/cit43/1) 2018; 552 Thangargj (D2GC00625A/cit32/1) 1992 Jin (D2GC00625A/cit38/1) 2015; 145 Okamoto (D2GC00625A/cit42/1) 1991; 95 Vanoye (D2GC00625A/cit49/1) 2016; 6 Bregante (D2GC00625A/cit7/1) 2017; 139 Madadi (D2GC00625A/cit21/1) 2021; 11 Dissanayake (D2GC00625A/cit20/1) 2021; 282 Malko (D2GC00625A/cit22/1) 2019; 370 Guo (D2GC00625A/cit36/1) 2012; 18 van Deelen (D2GC00625A/cit26/1) 2019; 2 Lorite (D2GC00625A/cit37/1) 2012; 43 James (D2GC00625A/cit39/1) 2016; 7 Kang (D2GC00625A/cit44/1) 2013; 1 |
References_xml | – volume: 148 start-page: 2608 year: 2018 ident: D2GC00625A/cit17/1 publication-title: Catal. Lett. doi: 10.1007/s10562-018-2447-8 – volume: 1 start-page: 7717 year: 2013 ident: D2GC00625A/cit44/1 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11038a – volume: 43 start-page: 1443 year: 2012 ident: D2GC00625A/cit37/1 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4098 – volume: 129 start-page: 9879 year: 2017 ident: D2GC00625A/cit29/1 publication-title: Angew. Chem. doi: 10.1002/ange.201703938 – volume: 7 start-page: 1 year: 2016 ident: D2GC00625A/cit39/1 publication-title: J. Pet. Technol. Altern. Fuels doi: 10.5897/JPTAF2015.0122 – volume: 9 start-page: 1923 year: 2018 ident: D2GC00625A/cit41/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b03230 – volume: 3 start-page: 482 year: 1990 ident: D2GC00625A/cit48/1 publication-title: J. Phys. Org. Chem. doi: 10.1002/poc.610030711 – volume: 132 start-page: 9129 year: 2010 ident: D2GC00625A/cit27/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102778e – volume: 139 start-page: 6888 year: 2017 ident: D2GC00625A/cit7/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01422 – volume: 8 start-page: 10784 year: 2018 ident: D2GC00625A/cit19/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01871 – volume: 59 start-page: 19982 year: 2020 ident: D2GC00625A/cit15/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c04264 – volume: 117 start-page: 11406 year: 2017 ident: D2GC00625A/cit16/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00167 – volume: 167 start-page: 82 year: 2013 ident: D2GC00625A/cit35/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.03.045 – volume: 260 start-page: 118049 year: 2020 ident: D2GC00625A/cit13/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118049 – volume-title: Sustainable Inorganic Chemistry year: 2016 ident: D2GC00625A/cit5/1 – volume-title: Epoxy Resins: Chemistry and Technology year: 2018 ident: D2GC00625A/cit2/1 doi: 10.1201/9780203756713 – volume: 11 start-page: 594 year: 2021 ident: D2GC00625A/cit21/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY01700K – volume: 6 start-page: 4724 year: 2016 ident: D2GC00625A/cit49/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00309E – volume: 4 start-page: 1032 year: 2014 ident: D2GC00625A/cit12/1 publication-title: ACS Catal. doi: 10.1021/cs401003d – volume: 46 start-page: 1720 year: 2013 ident: D2GC00625A/cit23/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar3002427 – volume: 552 start-page: 77 year: 2018 ident: D2GC00625A/cit43/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2017.12.025 – volume: 18 start-page: 13854 year: 2012 ident: D2GC00625A/cit36/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201201319 – volume: 282 start-page: 119573 year: 2021 ident: D2GC00625A/cit20/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119573 – volume: 11 start-page: 7863 year: 2021 ident: D2GC00625A/cit10/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01468 – volume: 31 start-page: 1901905 year: 2019 ident: D2GC00625A/cit24/1 publication-title: Adv. Mater. doi: 10.1002/adma.201901905 – volume: 69 start-page: 3453 year: 2004 ident: D2GC00625A/cit46/1 publication-title: Org. Chem. Front. doi: 10.1021/jo030345a – volume: 14 start-page: 911 year: 1996 ident: D2GC00625A/cit31/1 publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(96)00180-4 – volume: 145 start-page: 468 year: 2015 ident: D2GC00625A/cit38/1 publication-title: Catal. Lett. doi: 10.1007/s10562-014-1416-0 – volume: 119 start-page: 1600281 year: 2017 ident: D2GC00625A/cit47/1 publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.201600281 – volume: 6 start-page: 4584 year: 2016 ident: D2GC00625A/cit11/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01532 – volume: 5 start-page: 4890 year: 2020 ident: D2GC00625A/cit18/1 publication-title: ACS Omega doi: 10.1021/acsomega.9b03714 – volume: 8 start-page: 4645 year: 2018 ident: D2GC00625A/cit1/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b04443 – volume: 31 start-page: 1803966 year: 2019 ident: D2GC00625A/cit25/1 publication-title: Adv. Mater. doi: 10.1002/adma.201803966 – volume: 201 start-page: 112327 year: 2020 ident: D2GC00625A/cit3/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112327 – volume: 21 start-page: 2436 year: 2019 ident: D2GC00625A/cit6/1 publication-title: Green Chem. doi: 10.1039/C8GC03857K – start-page: 123 year: 1992 ident: D2GC00625A/cit32/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39920000123 – volume: 8 start-page: 1178 year: 2019 ident: D2GC00625A/cit14/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b06321 – volume-title: Oxidation and Antioxidants in Organic Chemistry and Biology year: 2005 ident: D2GC00625A/cit45/1 doi: 10.1201/9781420030853 – volume: 32 start-page: 2855 year: 1976 ident: D2GC00625A/cit50/1 publication-title: Tetrahedron doi: 10.1016/0040-4020(76)80137-8 – volume: 295 start-page: 370 year: 2016 ident: D2GC00625A/cit8/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.02.072 – volume: 12 start-page: 537 year: 2005 ident: D2GC00625A/cit30/1 publication-title: Synchrotron Radiat. doi: 10.1107/S0909049505012719 – start-page: 1578 year: 1992 ident: D2GC00625A/cit33/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39920001578 – volume: 130 start-page: 10150 year: 2008 ident: D2GC00625A/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7100399 – volume: 48 start-page: 8002 year: 2009 ident: D2GC00625A/cit9/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200903011 – volume: 2 start-page: 955 year: 2019 ident: D2GC00625A/cit26/1 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0364-x – volume: 138 start-page: 7484 year: 2016 ident: D2GC00625A/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03518 – volume: 95 start-page: 310 year: 1991 ident: D2GC00625A/cit42/1 publication-title: J. Phys. Chem. doi: 10.1021/j100154a057 – volume: 71 start-page: 395 year: 2002 ident: D2GC00625A/cit40/1 publication-title: Catal. Today doi: 10.1016/S0920-5861(01)00466-7 – start-page: 1 year: 2021 ident: D2GC00625A/cit4/1 publication-title: Nat. Rev. Mater. – volume: 370 start-page: 357 year: 2019 ident: D2GC00625A/cit22/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2019.01.008 |
SSID | ssj0011764 |
Score | 4.7760816 |
Snippet | Epoxide compounds are ultra-important intermediates for manufacturing a variety of chemical products, yet their industrial preparation still suffers from some... |
SourceID | crossref |
SourceType | Index Database Enrichment Source |
StartPage | 6200 |
Title | Highly efficient and robust aerobic co-oxidation of olefins and aldehydes over CoO x dispersed within hierarchical silicalite-1 zeolites |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9gAcKhqoaAtoJXoBy-DYzto5ViG0QIFLkHKL1vaaGkV21cZS2l_QX9nf0pn98qrtIeViWSuv4808zczuvnlLyEEYlKxIU-aX6ZD7MUtHPoeswY-zMskGRZDHUqf75y92_Cf-PhvOer0bh7XULrNP-dWDdSX_Y1VoA7tilewjLGtfCg1wD_aFK1gYrmvZGEkai0vkZFSyrlGRxZusvYBbgQpLuZc3frOqCpsZNgtRIi1GirQuCnF6WaDuLIwdfMNvb4VbNmeQE2paelV7eFq23G-QBZQVrvJh4bI_8K4Esuc0C1FnuJLI4-XmHDm55MBrKUvRrTwavQr8iL93OpzrDQXZ86hThqwUO0DUp7yxDr1VaNbhV8JTL4D_4HhugW2fKVKwLKb4V7XuYgfMk1F8duj455hFPkocqvDltqnzR4xTV4XZBryui2ZKGtWEexaqItZ7oSSIUIn1S3g0xjrToRVj7fS678RRy26U-_rRaN71fUI2Q5jGgB_ePJxMv53Yfa5BIgXO7LCMgG40-tz1dlImJ_eZviBbetJCDxUCt0lP1H3ydGxM1ifPHVnLPtmZdNWT0E2Hj4uX5FoBllrAUgAAVYClGrDUBSxtSqoBKx-1gKUIWAqApStqAUsVYKkLWOoClhrAviIfv06m42PfjHh-plRX5vf_1WiHbNRNLV4TGjGWiyzjYV6WMU-KNEMlxiQJeFwWAQ92yQf7wlyL3-MZLIsHXrtL3q_x43trPbVPnnUwfkM2lueteAtZ7DJ7p6FwC48-pvo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+and+robust+aerobic+co-oxidation+of+olefins+and+aldehydes+over+CoO+x+dispersed+within+hierarchical+silicalite-1+zeolites&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Li%2C+Chenhao&rft.au=Pu%2C+Ning&rft.au=Huang%2C+Kaimeng&rft.au=Xia%2C+Changjiu&rft.date=2022-08-15&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=24&rft.issue=16&rft.spage=6200&rft.epage=6214&rft_id=info:doi/10.1039%2FD2GC00625A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2GC00625A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |