Highly efficient and robust aerobic co-oxidation of olefins and aldehydes over CoO x dispersed within hierarchical silicalite-1 zeolites

Epoxide compounds are ultra-important intermediates for manufacturing a variety of chemical products, yet their industrial preparation still suffers from some non-negligible drawbacks. Herein, novel CoO x nanoparticles dispersed within internal channels of hierarchical silicalite-1 zeolite (CoO x /...

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 24; no. 16; pp. 6200 - 6214
Main Authors Li, Chenhao, Pu, Ning, Huang, Kaimeng, Xia, Changjiu, Peng, Xinxin, Lin, Min, Zhu, Bin, Shu, Xingtian
Format Journal Article
LanguageEnglish
Published 15.08.2022
Online AccessGet full text

Cover

Loading…
Abstract Epoxide compounds are ultra-important intermediates for manufacturing a variety of chemical products, yet their industrial preparation still suffers from some non-negligible drawbacks. Herein, novel CoO x nanoparticles dispersed within internal channels of hierarchical silicalite-1 zeolite (CoO x / h -S-1) catalysts, for precisely controllable initiation and transfer of free radical oxygen species under mild conditions, were initially prepared via combining silane pore-expansion and metal chelation by N-containing ligands under hydrothermal crystallization conditions. By using multiple characterization methods, it has been confirmed that CoO x nanoparticles loaded within zeolite internal channels through Co–O–Si bonds are majorly with the chemical valence state of +2 and a tetrahedral coordination environment, especially low Co loading, favors a small CoO x nanoparticle size and a high Co–O–Si proportion. CoO x / h -S-1 shows promising catalytic activity and lifetime in aerobic co-oxidation of olefin and aldehyde with a broad substrate scope and with high selectivities of epoxide and carboxylic acid, respectively. Remarkably, it has been found that loaded CoO x nanoparticles play key roles in enhancing radical initiation and transformation and oxygen transfer of reactive oxygen species (ROS); thus the catalytic performance can be tuned by altering the properties of both the catalyst and substrates. Importantly, these radical processes are profoundly verified by the impact of catalyst properties on the ci s– trans isomerism of epoxidized methyl oleate (EMO), radical inhibition experiments and radical trapping experiments with EPR spectroscopy analysis. Consequently, this work not only provides an efficient and green epoxidation route over robust catalysts with easily available O 2 as the oxidant, but also systematically reveals the fundamental understanding of the rational design and construction of metal nanoparticles within hierarchical zeolite channels and the corresponding structure–activity relationship for ROS transformation, which benefits the further development of both the catalyst and process technology.
AbstractList Epoxide compounds are ultra-important intermediates for manufacturing a variety of chemical products, yet their industrial preparation still suffers from some non-negligible drawbacks. Herein, novel CoO x nanoparticles dispersed within internal channels of hierarchical silicalite-1 zeolite (CoO x / h -S-1) catalysts, for precisely controllable initiation and transfer of free radical oxygen species under mild conditions, were initially prepared via combining silane pore-expansion and metal chelation by N-containing ligands under hydrothermal crystallization conditions. By using multiple characterization methods, it has been confirmed that CoO x nanoparticles loaded within zeolite internal channels through Co–O–Si bonds are majorly with the chemical valence state of +2 and a tetrahedral coordination environment, especially low Co loading, favors a small CoO x nanoparticle size and a high Co–O–Si proportion. CoO x / h -S-1 shows promising catalytic activity and lifetime in aerobic co-oxidation of olefin and aldehyde with a broad substrate scope and with high selectivities of epoxide and carboxylic acid, respectively. Remarkably, it has been found that loaded CoO x nanoparticles play key roles in enhancing radical initiation and transformation and oxygen transfer of reactive oxygen species (ROS); thus the catalytic performance can be tuned by altering the properties of both the catalyst and substrates. Importantly, these radical processes are profoundly verified by the impact of catalyst properties on the ci s– trans isomerism of epoxidized methyl oleate (EMO), radical inhibition experiments and radical trapping experiments with EPR spectroscopy analysis. Consequently, this work not only provides an efficient and green epoxidation route over robust catalysts with easily available O 2 as the oxidant, but also systematically reveals the fundamental understanding of the rational design and construction of metal nanoparticles within hierarchical zeolite channels and the corresponding structure–activity relationship for ROS transformation, which benefits the further development of both the catalyst and process technology.
Author Xia, Changjiu
Huang, Kaimeng
Peng, Xinxin
Lin, Min
Shu, Xingtian
Zhu, Bin
Pu, Ning
Li, Chenhao
Author_xml – sequence: 1
  givenname: Chenhao
  surname: Li
  fullname: Li, Chenhao
  organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
– sequence: 2
  givenname: Ning
  surname: Pu
  fullname: Pu, Ning
  organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
– sequence: 3
  givenname: Kaimeng
  surname: Huang
  fullname: Huang, Kaimeng
  organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
– sequence: 4
  givenname: Changjiu
  orcidid: 0000-0001-9560-7291
  surname: Xia
  fullname: Xia, Changjiu
  organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
– sequence: 5
  givenname: Xinxin
  orcidid: 0000-0003-0444-7013
  surname: Peng
  fullname: Peng, Xinxin
  organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
– sequence: 6
  givenname: Min
  surname: Lin
  fullname: Lin, Min
  organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
– sequence: 7
  givenname: Bin
  surname: Zhu
  fullname: Zhu, Bin
  organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
– sequence: 8
  givenname: Xingtian
  surname: Shu
  fullname: Shu, Xingtian
  organization: State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
BookMark eNqVj71OwzAURi1UJFpg4QnujBSwk5KqIwo_3VjYI2Nf44uMXfkaaHgCHpumQiAhFqbvDOcbzkxMYoooxImSZ0o2y_Or-raTsq0vLvfEVM3bplrWCzn55rY-EDPmJymVWrTzqfhY0aMPA6BzZAhjAR0t5PTwwlvELZABk6q0IasLpQjJQQroKPJO1cGiHywypFfM0KU72IAlXmNmtPBGxVMET5h1Np6MDsAUxqWClYJ3TCPxkdh3OjAef-2hOL25vu9WlcmJOaPr15medR56Jfuxtf9pbf4py1-yobJrK1lT-OvyCftBbfc
CitedBy_id crossref_primary_10_1002_ange_202500384
crossref_primary_10_1002_adsu_202400719
crossref_primary_10_1002_ange_202419900
crossref_primary_10_1002_anie_202419900
crossref_primary_10_1021_jacs_4c08018
crossref_primary_10_1021_acsami_3c07016
crossref_primary_10_1016_j_bse_2023_104737
crossref_primary_10_1016_j_cej_2024_158279
crossref_primary_10_1016_j_cej_2024_156100
crossref_primary_10_1021_acs_inorgchem_4c03791
crossref_primary_10_1039_D3CY01362F
crossref_primary_10_1002_anie_202500384
crossref_primary_10_1021_acs_cgd_3c00014
crossref_primary_10_1021_acssuschemeng_3c07406
crossref_primary_10_1016_j_fuel_2024_133221
Cites_doi 10.1007/s10562-018-2447-8
10.1039/c3ta11038a
10.1002/jrs.4098
10.1002/ange.201703938
10.5897/JPTAF2015.0122
10.1021/acscatal.8b03230
10.1002/poc.610030711
10.1021/ja102778e
10.1021/jacs.7b01422
10.1021/acscatal.8b01871
10.1021/acs.iecr.0c04264
10.1021/acs.chemrev.7b00167
10.1016/j.micromeso.2012.03.045
10.1016/j.apcatb.2019.118049
10.1201/9780203756713
10.1039/D0CY01700K
10.1039/C6CY00309E
10.1021/cs401003d
10.1021/ar3002427
10.1016/j.apcata.2017.12.025
10.1002/chem.201201319
10.1016/j.apcatb.2020.119573
10.1021/acscatal.1c01468
10.1002/adma.201901905
10.1021/jo030345a
10.1016/S0730-725X(96)00180-4
10.1007/s10562-014-1416-0
10.1002/ejlt.201600281
10.1021/acscatal.6b01532
10.1021/acsomega.9b03714
10.1021/acscatal.7b04443
10.1002/adma.201803966
10.1016/j.ejmech.2020.112327
10.1039/C8GC03857K
10.1039/c39920000123
10.1021/acssuschemeng.9b06321
10.1201/9781420030853
10.1016/0040-4020(76)80137-8
10.1016/j.cej.2016.02.072
10.1107/S0909049505012719
10.1039/c39920001578
10.1021/ja7100399
10.1002/ange.200903011
10.1038/s41929-019-0364-x
10.1021/jacs.6b03518
10.1021/j100154a057
10.1016/S0920-5861(01)00466-7
10.1016/j.jcat.2019.01.008
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/D2GC00625A
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 6214
ExternalDocumentID 10_1039_D2GC00625A
GroupedDBID 0-7
0R~
29I
4.4
5GY
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
P2P
R56
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
ID FETCH-crossref_primary_10_1039_D2GC00625A3
ISSN 1463-9262
IngestDate Thu Apr 24 22:50:29 EDT 2025
Tue Jul 01 01:41:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1039_D2GC00625A3
ORCID 0000-0001-9560-7291
0000-0003-0444-7013
ParticipantIDs crossref_primary_10_1039_D2GC00625A
crossref_citationtrail_10_1039_D2GC00625A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationYear 2022
References Zhou (D2GC00625A/cit15/1) 2020; 59
Wentzel (D2GC00625A/cit46/1) 2004; 69
Tuel (D2GC00625A/cit33/1) 1992
Büker (D2GC00625A/cit10/1) 2021; 11
Munz (D2GC00625A/cit11/1) 2016; 6
Bryliakov (D2GC00625A/cit16/1) 2017; 117
Atwood (D2GC00625A/cit5/1) 2016
Wu (D2GC00625A/cit14/1) 2019; 8
Madadi (D2GC00625A/cit13/1) 2020; 260
Tuci (D2GC00625A/cit12/1) 2014; 4
Vanoye (D2GC00625A/cit47/1) 2017; 119
Farokhi (D2GC00625A/cit17/1) 2018; 148
Denisov (D2GC00625A/cit45/1) 2005
Huang (D2GC00625A/cit9/1) 2009; 48
Luhmer (D2GC00625A/cit31/1) 1996; 14
Ma (D2GC00625A/cit1/1) 2018; 8
Wang (D2GC00625A/cit24/1) 2019; 31
Jiang (D2GC00625A/cit18/1) 2020; 5
Cywar (D2GC00625A/cit4/1) 2021
Wang (D2GC00625A/cit25/1) 2019; 31
Zhang (D2GC00625A/cit29/1) 2017; 129
Hansen (D2GC00625A/cit23/1) 2013; 46
Wang (D2GC00625A/cit28/1) 2016; 138
Saib (D2GC00625A/cit40/1) 2002; 71
Minkee (D2GC00625A/cit27/1) 2010; 132
Yan (D2GC00625A/cit41/1) 2018; 9
Ravel (D2GC00625A/cit30/1) 2005; 12
Kim (D2GC00625A/cit48/1) 1990; 3
Fan (D2GC00625A/cit34/1) 2008; 130
Chen (D2GC00625A/cit6/1) 2019; 21
Pereira (D2GC00625A/cit19/1) 2018; 8
Gomes (D2GC00625A/cit3/1) 2020; 201
Dryuk (D2GC00625A/cit50/1) 1976; 32
May (D2GC00625A/cit2/1) 2018
Sadowska (D2GC00625A/cit35/1) 2013; 167
Lin (D2GC00625A/cit8/1) 2016; 295
Koirala (D2GC00625A/cit43/1) 2018; 552
Thangargj (D2GC00625A/cit32/1) 1992
Jin (D2GC00625A/cit38/1) 2015; 145
Okamoto (D2GC00625A/cit42/1) 1991; 95
Vanoye (D2GC00625A/cit49/1) 2016; 6
Bregante (D2GC00625A/cit7/1) 2017; 139
Madadi (D2GC00625A/cit21/1) 2021; 11
Dissanayake (D2GC00625A/cit20/1) 2021; 282
Malko (D2GC00625A/cit22/1) 2019; 370
Guo (D2GC00625A/cit36/1) 2012; 18
van Deelen (D2GC00625A/cit26/1) 2019; 2
Lorite (D2GC00625A/cit37/1) 2012; 43
James (D2GC00625A/cit39/1) 2016; 7
Kang (D2GC00625A/cit44/1) 2013; 1
References_xml – volume: 148
  start-page: 2608
  year: 2018
  ident: D2GC00625A/cit17/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-018-2447-8
– volume: 1
  start-page: 7717
  year: 2013
  ident: D2GC00625A/cit44/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11038a
– volume: 43
  start-page: 1443
  year: 2012
  ident: D2GC00625A/cit37/1
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4098
– volume: 129
  start-page: 9879
  year: 2017
  ident: D2GC00625A/cit29/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201703938
– volume: 7
  start-page: 1
  year: 2016
  ident: D2GC00625A/cit39/1
  publication-title: J. Pet. Technol. Altern. Fuels
  doi: 10.5897/JPTAF2015.0122
– volume: 9
  start-page: 1923
  year: 2018
  ident: D2GC00625A/cit41/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03230
– volume: 3
  start-page: 482
  year: 1990
  ident: D2GC00625A/cit48/1
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.610030711
– volume: 132
  start-page: 9129
  year: 2010
  ident: D2GC00625A/cit27/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102778e
– volume: 139
  start-page: 6888
  year: 2017
  ident: D2GC00625A/cit7/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01422
– volume: 8
  start-page: 10784
  year: 2018
  ident: D2GC00625A/cit19/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01871
– volume: 59
  start-page: 19982
  year: 2020
  ident: D2GC00625A/cit15/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c04264
– volume: 117
  start-page: 11406
  year: 2017
  ident: D2GC00625A/cit16/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00167
– volume: 167
  start-page: 82
  year: 2013
  ident: D2GC00625A/cit35/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.03.045
– volume: 260
  start-page: 118049
  year: 2020
  ident: D2GC00625A/cit13/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118049
– volume-title: Sustainable Inorganic Chemistry
  year: 2016
  ident: D2GC00625A/cit5/1
– volume-title: Epoxy Resins: Chemistry and Technology
  year: 2018
  ident: D2GC00625A/cit2/1
  doi: 10.1201/9780203756713
– volume: 11
  start-page: 594
  year: 2021
  ident: D2GC00625A/cit21/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY01700K
– volume: 6
  start-page: 4724
  year: 2016
  ident: D2GC00625A/cit49/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00309E
– volume: 4
  start-page: 1032
  year: 2014
  ident: D2GC00625A/cit12/1
  publication-title: ACS Catal.
  doi: 10.1021/cs401003d
– volume: 46
  start-page: 1720
  year: 2013
  ident: D2GC00625A/cit23/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3002427
– volume: 552
  start-page: 77
  year: 2018
  ident: D2GC00625A/cit43/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2017.12.025
– volume: 18
  start-page: 13854
  year: 2012
  ident: D2GC00625A/cit36/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201201319
– volume: 282
  start-page: 119573
  year: 2021
  ident: D2GC00625A/cit20/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119573
– volume: 11
  start-page: 7863
  year: 2021
  ident: D2GC00625A/cit10/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01468
– volume: 31
  start-page: 1901905
  year: 2019
  ident: D2GC00625A/cit24/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901905
– volume: 69
  start-page: 3453
  year: 2004
  ident: D2GC00625A/cit46/1
  publication-title: Org. Chem. Front.
  doi: 10.1021/jo030345a
– volume: 14
  start-page: 911
  year: 1996
  ident: D2GC00625A/cit31/1
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(96)00180-4
– volume: 145
  start-page: 468
  year: 2015
  ident: D2GC00625A/cit38/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-014-1416-0
– volume: 119
  start-page: 1600281
  year: 2017
  ident: D2GC00625A/cit47/1
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201600281
– volume: 6
  start-page: 4584
  year: 2016
  ident: D2GC00625A/cit11/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01532
– volume: 5
  start-page: 4890
  year: 2020
  ident: D2GC00625A/cit18/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03714
– volume: 8
  start-page: 4645
  year: 2018
  ident: D2GC00625A/cit1/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04443
– volume: 31
  start-page: 1803966
  year: 2019
  ident: D2GC00625A/cit25/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803966
– volume: 201
  start-page: 112327
  year: 2020
  ident: D2GC00625A/cit3/1
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2020.112327
– volume: 21
  start-page: 2436
  year: 2019
  ident: D2GC00625A/cit6/1
  publication-title: Green Chem.
  doi: 10.1039/C8GC03857K
– start-page: 123
  year: 1992
  ident: D2GC00625A/cit32/1
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39920000123
– volume: 8
  start-page: 1178
  year: 2019
  ident: D2GC00625A/cit14/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06321
– volume-title: Oxidation and Antioxidants in Organic Chemistry and Biology
  year: 2005
  ident: D2GC00625A/cit45/1
  doi: 10.1201/9781420030853
– volume: 32
  start-page: 2855
  year: 1976
  ident: D2GC00625A/cit50/1
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(76)80137-8
– volume: 295
  start-page: 370
  year: 2016
  ident: D2GC00625A/cit8/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.02.072
– volume: 12
  start-page: 537
  year: 2005
  ident: D2GC00625A/cit30/1
  publication-title: Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– start-page: 1578
  year: 1992
  ident: D2GC00625A/cit33/1
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39920001578
– volume: 130
  start-page: 10150
  year: 2008
  ident: D2GC00625A/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja7100399
– volume: 48
  start-page: 8002
  year: 2009
  ident: D2GC00625A/cit9/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200903011
– volume: 2
  start-page: 955
  year: 2019
  ident: D2GC00625A/cit26/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0364-x
– volume: 138
  start-page: 7484
  year: 2016
  ident: D2GC00625A/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03518
– volume: 95
  start-page: 310
  year: 1991
  ident: D2GC00625A/cit42/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100154a057
– volume: 71
  start-page: 395
  year: 2002
  ident: D2GC00625A/cit40/1
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(01)00466-7
– start-page: 1
  year: 2021
  ident: D2GC00625A/cit4/1
  publication-title: Nat. Rev. Mater.
– volume: 370
  start-page: 357
  year: 2019
  ident: D2GC00625A/cit22/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.01.008
SSID ssj0011764
Score 4.7760816
Snippet Epoxide compounds are ultra-important intermediates for manufacturing a variety of chemical products, yet their industrial preparation still suffers from some...
SourceID crossref
SourceType Index Database
Enrichment Source
StartPage 6200
Title Highly efficient and robust aerobic co-oxidation of olefins and aldehydes over CoO x dispersed within hierarchical silicalite-1 zeolites
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9gAcKhqoaAtoJXoBy-DYzto5ViG0QIFLkHKL1vaaGkV21cZS2l_QX9nf0pn98qrtIeViWSuv4808zczuvnlLyEEYlKxIU-aX6ZD7MUtHPoeswY-zMskGRZDHUqf75y92_Cf-PhvOer0bh7XULrNP-dWDdSX_Y1VoA7tilewjLGtfCg1wD_aFK1gYrmvZGEkai0vkZFSyrlGRxZusvYBbgQpLuZc3frOqCpsZNgtRIi1GirQuCnF6WaDuLIwdfMNvb4VbNmeQE2paelV7eFq23G-QBZQVrvJh4bI_8K4Esuc0C1FnuJLI4-XmHDm55MBrKUvRrTwavQr8iL93OpzrDQXZ86hThqwUO0DUp7yxDr1VaNbhV8JTL4D_4HhugW2fKVKwLKb4V7XuYgfMk1F8duj455hFPkocqvDltqnzR4xTV4XZBryui2ZKGtWEexaqItZ7oSSIUIn1S3g0xjrToRVj7fS678RRy26U-_rRaN71fUI2Q5jGgB_ePJxMv53Yfa5BIgXO7LCMgG40-tz1dlImJ_eZviBbetJCDxUCt0lP1H3ydGxM1ifPHVnLPtmZdNWT0E2Hj4uX5FoBllrAUgAAVYClGrDUBSxtSqoBKx-1gKUIWAqApStqAUsVYKkLWOoClhrAviIfv06m42PfjHh-plRX5vf_1WiHbNRNLV4TGjGWiyzjYV6WMU-KNEMlxiQJeFwWAQ92yQf7wlyL3-MZLIsHXrtL3q_x43trPbVPnnUwfkM2lueteAtZ7DJ7p6FwC48-pvo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+and+robust+aerobic+co-oxidation+of+olefins+and+aldehydes+over+CoO+x+dispersed+within+hierarchical+silicalite-1+zeolites&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Li%2C+Chenhao&rft.au=Pu%2C+Ning&rft.au=Huang%2C+Kaimeng&rft.au=Xia%2C+Changjiu&rft.date=2022-08-15&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=24&rft.issue=16&rft.spage=6200&rft.epage=6214&rft_id=info:doi/10.1039%2FD2GC00625A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2GC00625A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon