Probabilistic Forecasts of September Arctic Sea Ice Extent at the Interannual Timescale With Data‐Driven Statistical Models
The widespread impacts of declining Arctic sea ice necessitate accurate and reliable predictions. While much focus has been placed on subseasonal to seasonal forecasts or multidecadal projections, seasonal to interannual predictions—crucial for planning and infrastructure—have received less emphasis...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.09.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | The widespread impacts of declining Arctic sea ice necessitate accurate and reliable predictions. While much focus has been placed on subseasonal to seasonal forecasts or multidecadal projections, seasonal to interannual predictions—crucial for planning and infrastructure—have received less emphasis. Internal climate variability is a dominant source of uncertainty on these timescales, yet initialized dynamical climate model predictions have limited usefulness due to biases and long‐term drift that leads to poor skill beyond seasonal timescales. This study develops statistical models—transfer operators (TO) and neural networks (NN)—to forecast probabilistic state transitions of Arctic September sea ice extent (SIE) internal variability. Trained on 24,420 transitions from the CMIP6 archive, these models make accurate and reliable predictions across multiple initialization months. At interannual timescales, they outperform simple persistence in predicting SIE trends. At seasonal timescales, their skill is comparable to other numerical and statistical models in the Sea Ice Outlook. While TO performance declines for spring initializations, NNs incorporating information about the area of thick ice can overcome the spring predictability barrier for March–May initializations. For the next decade, the TO suggests that September SIE will likely remain above the projected forced trend, while the NN predicts it will likely be lower. However, both models predict that the trend in September SIE will likely be higher (65%–96% chance) than the CMIP6 projected forced trend over the next 3 years, suggesting near‐term stability. These results highlight the potential of statistical approaches for improving Arctic sea ice predictions on critical planning timescales.
The year‐to‐year variability in Arctic sea ice cover is challenging to predict, but is of great importance due to its widespread environmental, geopolitical, and logistical impacts. We show that statistical models can make skillful and reliable predictions of Arctic sea ice extent (SIE) by learning from variability in the sea ice state simulated by climate models. We compare the performance of two different statistical models in hindcasting September Arctic SIE at seasonal timescales, for known years of rapid and slower sea ice loss, and for years of extreme sea ice loss. These models are then used for future forecasts, where they predict an anomalously high Arctic SIE over the next 3‐year period. However, the different model types disagree in predictions over the next decade: one model predicts Arctic SIE will be anomalously high, and one predicts it will be anomalously low. This work is a novel example of statistical models providing skillful and reliable predictions of Arctic sea ice on timescales further out than one season.
Statistical models can skillfully and reliably predict Arctic September sea ice extent (SIE) state transitions with a time lag of up to 5 years A reliable transfer operator predicts an 86% chance that September SIE will exceed the forced trend for the 2024–2028 period A neural network using information about the area of thick sea ice shows skill when initialized before the spring predictability barrier |
---|---|
AbstractList | The widespread impacts of declining Arctic sea ice necessitate accurate and reliable predictions. While much focus has been placed on subseasonal to seasonal forecasts or multidecadal projections, seasonal to interannual predictions—crucial for planning and infrastructure—have received less emphasis. Internal climate variability is a dominant source of uncertainty on these timescales, yet initialized dynamical climate model predictions have limited usefulness due to biases and long‐term drift that leads to poor skill beyond seasonal timescales. This study develops statistical models—transfer operators (TO) and neural networks (NN)—to forecast probabilistic state transitions of Arctic September sea ice extent (SIE) internal variability. Trained on 24,420 transitions from the CMIP6 archive, these models make accurate and reliable predictions across multiple initialization months. At interannual timescales, they outperform simple persistence in predicting SIE trends. At seasonal timescales, their skill is comparable to other numerical and statistical models in the Sea Ice Outlook. While TO performance declines for spring initializations, NNs incorporating information about the area of thick ice can overcome the spring predictability barrier for March–May initializations. For the next decade, the TO suggests that September SIE will likely remain above the projected forced trend, while the NN predicts it will likely be lower. However, both models predict that the trend in September SIE will likely be higher (65%–96% chance) than the CMIP6 projected forced trend over the next 3 years, suggesting near‐term stability. These results highlight the potential of statistical approaches for improving Arctic sea ice predictions on critical planning timescales.
The year‐to‐year variability in Arctic sea ice cover is challenging to predict, but is of great importance due to its widespread environmental, geopolitical, and logistical impacts. We show that statistical models can make skillful and reliable predictions of Arctic sea ice extent (SIE) by learning from variability in the sea ice state simulated by climate models. We compare the performance of two different statistical models in hindcasting September Arctic SIE at seasonal timescales, for known years of rapid and slower sea ice loss, and for years of extreme sea ice loss. These models are then used for future forecasts, where they predict an anomalously high Arctic SIE over the next 3‐year period. However, the different model types disagree in predictions over the next decade: one model predicts Arctic SIE will be anomalously high, and one predicts it will be anomalously low. This work is a novel example of statistical models providing skillful and reliable predictions of Arctic sea ice on timescales further out than one season.
Statistical models can skillfully and reliably predict Arctic September sea ice extent (SIE) state transitions with a time lag of up to 5 years A reliable transfer operator predicts an 86% chance that September SIE will exceed the forced trend for the 2024–2028 period A neural network using information about the area of thick sea ice shows skill when initialized before the spring predictability barrier |
Author | Massonnet, F. Sticker, A. Hoffman, L. |
Author_xml | – sequence: 1 givenname: L. orcidid: 0000-0002-9563-8925 surname: Hoffman fullname: Hoffman, L. organization: Earth and Life Institute (ELI), Earth and Climate, Université Catholique de Louvain Louvain‐la‐Neuve Belgium – sequence: 2 givenname: F. orcidid: 0000-0002-4697-5781 surname: Massonnet fullname: Massonnet, F. organization: Earth and Life Institute (ELI), Earth and Climate, Université Catholique de Louvain Louvain‐la‐Neuve Belgium – sequence: 3 givenname: A. orcidid: 0000-0001-9975-9479 surname: Sticker fullname: Sticker, A. organization: Earth and Life Institute (ELI), Earth and Climate, Université Catholique de Louvain Louvain‐la‐Neuve Belgium |
BookMark | eNqVj0FKA0EQRRuJYNTsPEAdwGhND4nOUkxCIgjCBFwONW0NaZnpDtWlmIXgETyjJzEJLrJ19T_8B593anohBjbmIsOrDG1xbdGOHuaIOB4XR6ZviyIfjmyGvYN-YgYpvW6ZPLd4izd98_kksabatz6pdzCLwo6SJogNlLxW7moWuBO3W0smWDiG6YdyUCAFXTEsgrJQCG_UwtJ3nBy1DM9eVzAhpZ-v74n4dw5QKun-Zgs-xhdu07k5bqhNPPjLM3M5my7v50MnMSXhplqL70g2VYbVzrI6tMz_if8CqzRbzg |
Cites_doi | 10.1515/9780691218632 10.1029/2011JC007084 10.1029/2020GL090825 10.1175/BAMS‐D‐23‐0163.1 10.1175/JCLI‐D‐17‐0427.1 10.1016/j.patcog.2016.11.008 10.1038/s43017‐024‐00542‐0 10.1038/s41558‐018‐0204‐z 10.1175/JCLI‐D‐17‐0436.1 10.1002/2013GL058755 10.5194/tc‐17‐4133‐2023 10.5281/zenodo.16143257 10.1029/2023JD040179 10.1029/2006GL028024 10.5194/tc‐17‐127‐2023 10.5194/tc‐6‐1383‐2012 10.1002/qj.2401 10.1029/2011GL048008 10.1038/nclimate2483 10.1016/j.patrec.2021.06.030 10.1214/aoms/1177729694 10.1175/JCLI‐D‐21‐0539.1 10.1002/qj.2643 10.1038/s41467‐018‐05442‐8 10.1175/1520‐0493(2003)131<0845:mgsiwa>2.0.co;2 10.1126/science.1139426 10.3389/fmars.2021.672477 10.1029/2019GL086749 10.1029/2009GL040546 10.1088/1748‐9326/abe0ec 10.1029/2011GL048807 10.1016/S0377‐2217(03)00002‐X 10.1088/1748‐9326/aade56 10.1175/AIES‐D‐23‐0018.1 10.3390/rs13173413 10.1098/rsif.2013.1162 10.5194/gmdd‐8‐10539‐2015 10.1175/JCLI‐D‐13‐00614.1 10.7265/N5K072F8 10.5670/oceanog.2022.113 10.1029/2020GL088335 10.1126/science.aag2345 10.1016/S0019‐9958(65)90241‐X 10.1002/2014GL059388 10.1175/JCLI‐D‐11‐00209.1 10.1007/s00382‐017‐3939‐8 10.21957/hi1eektr 10.1175/2010JCLI3775.1 10.1007/978-1-4612-0177-9_12 10.5194/esd‐10‐189‐2019 10.1175/JCLI‐D‐19‐0034.1 10.5194/egusphere‐2024‐1873 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1029/2025JH000669 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
ExternalDocumentID | 10_1029_2025JH000669 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-crossref_primary_10_1029_2025JH0006693 |
ISSN | 2993-5210 |
IngestDate | Thu Aug 21 00:13:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1029_2025JH0006693 |
ORCID | 0000-0002-9563-8925 0000-0002-4697-5781 0000-0001-9975-9479 |
ParticipantIDs | crossref_primary_10_1029_2025JH000669 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
References | e_1_2_10_1_27_1 e_1_2_10_1_29_1 e_1_2_10_1_46_1 e_1_2_10_1_25_1 e_1_2_10_1_48_1 e_1_2_10_1_42_1 e_1_2_10_1_21_1 e_1_2_10_1_44_1 Tatebe H. (e_1_2_10_2_5_1) 2018 e_1_2_10_1_40_1 Hamilton J. D. (e_1_2_10_1_23_1) 1994 e_1_2_10_1_9_1 e_1_2_10_1_7_1 e_1_2_10_1_16_1 e_1_2_10_1_39_1 e_1_2_10_1_18_1 e_1_2_10_1_12_1 e_1_2_10_1_35_1 e_1_2_10_1_14_1 e_1_2_10_1_37_1 e_1_2_10_1_56_1 e_1_2_10_1_31_1 e_1_2_10_1_5_1 e_1_2_10_1_52_1 e_1_2_10_1_10_1 e_1_2_10_1_33_1 e_1_2_10_1_54_1 e_1_2_10_1_50_1 e_1_2_10_1_28_1 e_1_2_10_1_49_1 e_1_2_10_1_24_1 e_1_2_10_1_45_1 e_1_2_10_1_26_1 e_1_2_10_1_47_1 e_1_2_10_1_20_1 e_1_2_10_1_41_1 Yukimoto S. (e_1_2_10_2_6_1) 2019 e_1_2_10_1_22_1 e_1_2_10_1_43_1 Froyland G. (e_1_2_10_1_19_1) 2001 Ziehn T. (e_1_2_10_2_7_1) 2019 Alber M. (e_1_2_10_1_3_1) 2019; 20 e_1_2_10_1_8_1 e_1_2_10_1_17_1 e_1_2_10_1_38_1 e_1_2_10_1_2_1 e_1_2_10_1_13_1 IPCC (e_1_2_10_1_30_1) 2023 e_1_2_10_1_34_1 Dix M. (e_1_2_10_2_3_1) 2019 e_1_2_10_1_15_1 e_1_2_10_1_36_1 e_1_2_10_1_57_1 Swart N. C. (e_1_2_10_2_4_1) 2019 e_1_2_10_1_6_1 e_1_2_10_1_53_1 e_1_2_10_1_4_1 e_1_2_10_1_55_1 e_1_2_10_1_11_1 e_1_2_10_1_32_1 e_1_2_10_1_51_1 Boucher O. (e_1_2_10_2_2_1) 2018 |
References_xml | – start-page: 677 volume-title: Time series analysis year: 1994 ident: e_1_2_10_1_23_1 doi: 10.1515/9780691218632 – ident: e_1_2_10_1_45_1 doi: 10.1029/2011JC007084 – ident: e_1_2_10_1_5_1 doi: 10.1029/2020GL090825 – ident: e_1_2_10_1_9_1 doi: 10.1175/BAMS‐D‐23‐0163.1 – ident: e_1_2_10_1_42_1 doi: 10.1175/JCLI‐D‐17‐0427.1 – volume-title: Climate change 2021 – The physical science basis: Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change year: 2023 ident: e_1_2_10_1_30_1 – volume-title: MRI MRI‐ESM2.0 model output prepared for CMIP6 CMIP historical year: 2019 ident: e_1_2_10_2_6_1 – ident: e_1_2_10_1_39_1 doi: 10.1016/j.patcog.2016.11.008 – ident: e_1_2_10_1_2_1 – ident: e_1_2_10_1_44_1 doi: 10.1038/s43017‐024‐00542‐0 – ident: e_1_2_10_1_38_1 doi: 10.1038/s41558‐018‐0204‐z – ident: e_1_2_10_1_34_1 doi: 10.1175/JCLI‐D‐17‐0436.1 – ident: e_1_2_10_1_54_1 doi: 10.1002/2013GL058755 – volume-title: MIROC MIROC6 model output prepared for CMIP6 CMIP historical year: 2018 ident: e_1_2_10_2_5_1 – ident: e_1_2_10_1_15_1 doi: 10.5194/tc‐17‐4133‐2023 – ident: e_1_2_10_1_25_1 doi: 10.5281/zenodo.16143257 – ident: e_1_2_10_1_36_1 doi: 10.1029/2023JD040179 – volume: 20 year: 2019 ident: e_1_2_10_1_3_1 article-title: iNNvestigate neural networks publication-title: Journal of Machine Learning Research – ident: e_1_2_10_1_26_1 doi: 10.1029/2006GL028024 – ident: e_1_2_10_1_43_1 doi: 10.5194/tc‐17‐127‐2023 – ident: e_1_2_10_1_37_1 doi: 10.5194/tc‐6‐1383‐2012 – ident: e_1_2_10_1_22_1 doi: 10.1002/qj.2401 – ident: e_1_2_10_1_32_1 doi: 10.1029/2011GL048008 – ident: e_1_2_10_1_52_1 doi: 10.1038/nclimate2483 – ident: e_1_2_10_1_31_1 doi: 10.1016/j.patrec.2021.06.030 – ident: e_1_2_10_1_33_1 doi: 10.1214/aoms/1177729694 – ident: e_1_2_10_1_35_1 doi: 10.1175/JCLI‐D‐21‐0539.1 – ident: e_1_2_10_1_24_1 doi: 10.1002/qj.2643 – ident: e_1_2_10_1_47_1 doi: 10.1038/s41467‐018‐05442‐8 – ident: e_1_2_10_1_57_1 doi: 10.1175/1520‐0493(2003)131<0845:mgsiwa>2.0.co;2 – ident: e_1_2_10_1_46_1 doi: 10.1126/science.1139426 – ident: e_1_2_10_1_48_1 doi: 10.3389/fmars.2021.672477 – ident: e_1_2_10_1_41_1 doi: 10.1029/2019GL086749 – ident: e_1_2_10_1_21_1 doi: 10.1029/2009GL040546 – ident: e_1_2_10_1_8_1 doi: 10.1088/1748‐9326/abe0ec – ident: e_1_2_10_1_7_1 doi: 10.1029/2011GL048807 – ident: e_1_2_10_1_4_1 doi: 10.1016/S0377‐2217(03)00002‐X – ident: e_1_2_10_1_51_1 doi: 10.1088/1748‐9326/aade56 – ident: e_1_2_10_1_18_1 doi: 10.1175/AIES‐D‐23‐0018.1 – volume-title: CCCMA CANESM5 model output prepared for CMIP6 CMIP historical year: 2019 ident: e_1_2_10_2_4_1 – volume-title: Csiro ACCESS‐ESM1.5 model output prepared for CMIP6 CMIP historical year: 2019 ident: e_1_2_10_2_7_1 – ident: e_1_2_10_1_12_1 doi: 10.3390/rs13173413 – volume-title: CSIRO‐ARCCSS ACCESS‐CM2 model output prepared for CMIP6 CMIP historical year: 2019 ident: e_1_2_10_2_3_1 – ident: e_1_2_10_1_55_1 doi: 10.1098/rsif.2013.1162 – volume-title: IPSL IPSL‐CM6A‐LR model output prepared for CMIP6 CMIP historical year: 2018 ident: e_1_2_10_2_2_1 – ident: e_1_2_10_1_16_1 doi: 10.5194/gmdd‐8‐10539‐2015 – ident: e_1_2_10_1_13_1 doi: 10.1175/JCLI‐D‐13‐00614.1 – ident: e_1_2_10_1_17_1 doi: 10.7265/N5K072F8 – ident: e_1_2_10_1_27_1 doi: 10.5670/oceanog.2022.113 – ident: e_1_2_10_1_10_1 doi: 10.1029/2020GL088335 – ident: e_1_2_10_1_40_1 doi: 10.1126/science.aag2345 – ident: e_1_2_10_1_20_1 – ident: e_1_2_10_1_56_1 doi: 10.1016/S0019‐9958(65)90241‐X – ident: e_1_2_10_1_50_1 doi: 10.1002/2014GL059388 – ident: e_1_2_10_1_11_1 doi: 10.1175/JCLI‐D‐11‐00209.1 – ident: e_1_2_10_1_14_1 doi: 10.1007/s00382‐017‐3939‐8 – ident: e_1_2_10_1_53_1 doi: 10.21957/hi1eektr – ident: e_1_2_10_1_6_1 doi: 10.1175/2010JCLI3775.1 – start-page: 281 volume-title: Nonlinear dynamics and statistics year: 2001 ident: e_1_2_10_1_19_1 doi: 10.1007/978-1-4612-0177-9_12 – ident: e_1_2_10_1_29_1 doi: 10.5194/esd‐10‐189‐2019 – ident: e_1_2_10_1_28_1 doi: 10.1175/JCLI‐D‐19‐0034.1 – ident: e_1_2_10_1_49_1 doi: 10.5194/egusphere‐2024‐1873 |
SSID | ssj0003320807 |
Score | 4.6029587 |
Snippet | The widespread impacts of declining Arctic sea ice necessitate accurate and reliable predictions. While much focus has been placed on subseasonal to seasonal... |
SourceID | crossref |
SourceType | Index Database |
Title | Probabilistic Forecasts of September Arctic Sea Ice Extent at the Interannual Timescale With Data‐Driven Statistical Models |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvXgRRcVn2YOeamrcTdLmWLRSC4rQCr2VPDb2IE1I04ug-BO8-vf8Jc5k89hKhOollKHdLJkvu19n55sh5NQMnLbgvqVZ3Dc0gweB1jE9XWv7l77r6WbHd1DgfHdv9R-Nwdgc12qfStbSInFb3kulruQ_XgUb-BVVsn_wbDEoGOAz-Beu4GG4ruTjhxjeRsxuxWLLTeyy6TlzmZwxFFEisNlHsxujDAoMTvMWXuIeRr1zDaMMCMq6pFINAi4TsFQkU8ADEMs8FeI6xlUxpabpzVDRiz105r-Q2ycRRjkCsnpC0xZ2OZoiq33O4zGZqC5aLCcE9MMgyEURrTJmDk8TRUQp3y7MQ5hNlhnSbakxDGYWSVrZUscwixCIhDyhERW2bK1mCiR55Q6gMyygijcZ9FNCZZc7XX66_2MDLNIS0wN5Zk_UX6-RdQb_QLA5xt1bGb7jnOlSjF_MM5NVwAAX6gAK4VGYy2iLbGZeoV2Jn21SE7Md8rqEHVpgh4YBLbBDJXbA4FDADpXYoU5CATtUwQ4tsEMROxSx8_X-IVFDFdRQiZpdcn7TG131tXzOk0hWPZlUPRy-R-qzcCb2CRXcdbBcHLdFx2A-dy1DZy7zuGXagcvdA3K20pCHK37viGyUSDom9SReiBPgh4nbSOMqjdRf36XDbJo |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Forecasts+of+September+Arctic+Sea+Ice+Extent+at+the+Interannual+Timescale+With+Data%E2%80%90Driven+Statistical+Models&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Hoffman%2C+L.&rft.au=Massonnet%2C+F.&rft.au=Sticker%2C+A.&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |