Probabilistic Forecasts of September Arctic Sea Ice Extent at the Interannual Timescale With Data‐Driven Statistical Models

The widespread impacts of declining Arctic sea ice necessitate accurate and reliable predictions. While much focus has been placed on subseasonal to seasonal forecasts or multidecadal projections, seasonal to interannual predictions—crucial for planning and infrastructure—have received less emphasis...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Hoffman, L., Massonnet, F., Sticker, A.
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text

Cover

Loading…
Abstract The widespread impacts of declining Arctic sea ice necessitate accurate and reliable predictions. While much focus has been placed on subseasonal to seasonal forecasts or multidecadal projections, seasonal to interannual predictions—crucial for planning and infrastructure—have received less emphasis. Internal climate variability is a dominant source of uncertainty on these timescales, yet initialized dynamical climate model predictions have limited usefulness due to biases and long‐term drift that leads to poor skill beyond seasonal timescales. This study develops statistical models—transfer operators (TO) and neural networks (NN)—to forecast probabilistic state transitions of Arctic September sea ice extent (SIE) internal variability. Trained on 24,420 transitions from the CMIP6 archive, these models make accurate and reliable predictions across multiple initialization months. At interannual timescales, they outperform simple persistence in predicting SIE trends. At seasonal timescales, their skill is comparable to other numerical and statistical models in the Sea Ice Outlook. While TO performance declines for spring initializations, NNs incorporating information about the area of thick ice can overcome the spring predictability barrier for March–May initializations. For the next decade, the TO suggests that September SIE will likely remain above the projected forced trend, while the NN predicts it will likely be lower. However, both models predict that the trend in September SIE will likely be higher (65%–96% chance) than the CMIP6 projected forced trend over the next 3 years, suggesting near‐term stability. These results highlight the potential of statistical approaches for improving Arctic sea ice predictions on critical planning timescales. The year‐to‐year variability in Arctic sea ice cover is challenging to predict, but is of great importance due to its widespread environmental, geopolitical, and logistical impacts. We show that statistical models can make skillful and reliable predictions of Arctic sea ice extent (SIE) by learning from variability in the sea ice state simulated by climate models. We compare the performance of two different statistical models in hindcasting September Arctic SIE at seasonal timescales, for known years of rapid and slower sea ice loss, and for years of extreme sea ice loss. These models are then used for future forecasts, where they predict an anomalously high Arctic SIE over the next 3‐year period. However, the different model types disagree in predictions over the next decade: one model predicts Arctic SIE will be anomalously high, and one predicts it will be anomalously low. This work is a novel example of statistical models providing skillful and reliable predictions of Arctic sea ice on timescales further out than one season. Statistical models can skillfully and reliably predict Arctic September sea ice extent (SIE) state transitions with a time lag of up to 5 years A reliable transfer operator predicts an 86% chance that September SIE will exceed the forced trend for the 2024–2028 period A neural network using information about the area of thick sea ice shows skill when initialized before the spring predictability barrier
AbstractList The widespread impacts of declining Arctic sea ice necessitate accurate and reliable predictions. While much focus has been placed on subseasonal to seasonal forecasts or multidecadal projections, seasonal to interannual predictions—crucial for planning and infrastructure—have received less emphasis. Internal climate variability is a dominant source of uncertainty on these timescales, yet initialized dynamical climate model predictions have limited usefulness due to biases and long‐term drift that leads to poor skill beyond seasonal timescales. This study develops statistical models—transfer operators (TO) and neural networks (NN)—to forecast probabilistic state transitions of Arctic September sea ice extent (SIE) internal variability. Trained on 24,420 transitions from the CMIP6 archive, these models make accurate and reliable predictions across multiple initialization months. At interannual timescales, they outperform simple persistence in predicting SIE trends. At seasonal timescales, their skill is comparable to other numerical and statistical models in the Sea Ice Outlook. While TO performance declines for spring initializations, NNs incorporating information about the area of thick ice can overcome the spring predictability barrier for March–May initializations. For the next decade, the TO suggests that September SIE will likely remain above the projected forced trend, while the NN predicts it will likely be lower. However, both models predict that the trend in September SIE will likely be higher (65%–96% chance) than the CMIP6 projected forced trend over the next 3 years, suggesting near‐term stability. These results highlight the potential of statistical approaches for improving Arctic sea ice predictions on critical planning timescales. The year‐to‐year variability in Arctic sea ice cover is challenging to predict, but is of great importance due to its widespread environmental, geopolitical, and logistical impacts. We show that statistical models can make skillful and reliable predictions of Arctic sea ice extent (SIE) by learning from variability in the sea ice state simulated by climate models. We compare the performance of two different statistical models in hindcasting September Arctic SIE at seasonal timescales, for known years of rapid and slower sea ice loss, and for years of extreme sea ice loss. These models are then used for future forecasts, where they predict an anomalously high Arctic SIE over the next 3‐year period. However, the different model types disagree in predictions over the next decade: one model predicts Arctic SIE will be anomalously high, and one predicts it will be anomalously low. This work is a novel example of statistical models providing skillful and reliable predictions of Arctic sea ice on timescales further out than one season. Statistical models can skillfully and reliably predict Arctic September sea ice extent (SIE) state transitions with a time lag of up to 5 years A reliable transfer operator predicts an 86% chance that September SIE will exceed the forced trend for the 2024–2028 period A neural network using information about the area of thick sea ice shows skill when initialized before the spring predictability barrier
Author Massonnet, F.
Sticker, A.
Hoffman, L.
Author_xml – sequence: 1
  givenname: L.
  orcidid: 0000-0002-9563-8925
  surname: Hoffman
  fullname: Hoffman, L.
  organization: Earth and Life Institute (ELI), Earth and Climate, Université Catholique de Louvain Louvain‐la‐Neuve Belgium
– sequence: 2
  givenname: F.
  orcidid: 0000-0002-4697-5781
  surname: Massonnet
  fullname: Massonnet, F.
  organization: Earth and Life Institute (ELI), Earth and Climate, Université Catholique de Louvain Louvain‐la‐Neuve Belgium
– sequence: 3
  givenname: A.
  orcidid: 0000-0001-9975-9479
  surname: Sticker
  fullname: Sticker, A.
  organization: Earth and Life Institute (ELI), Earth and Climate, Université Catholique de Louvain Louvain‐la‐Neuve Belgium
BookMark eNqVj0FKA0EQRRuJYNTsPEAdwGhND4nOUkxCIgjCBFwONW0NaZnpDtWlmIXgETyjJzEJLrJ19T_8B593anohBjbmIsOrDG1xbdGOHuaIOB4XR6ZviyIfjmyGvYN-YgYpvW6ZPLd4izd98_kksabatz6pdzCLwo6SJogNlLxW7moWuBO3W0smWDiG6YdyUCAFXTEsgrJQCG_UwtJ3nBy1DM9eVzAhpZ-v74n4dw5QKun-Zgs-xhdu07k5bqhNPPjLM3M5my7v50MnMSXhplqL70g2VYbVzrI6tMz_if8CqzRbzg
Cites_doi 10.1515/9780691218632
10.1029/2011JC007084
10.1029/2020GL090825
10.1175/BAMS‐D‐23‐0163.1
10.1175/JCLI‐D‐17‐0427.1
10.1016/j.patcog.2016.11.008
10.1038/s43017‐024‐00542‐0
10.1038/s41558‐018‐0204‐z
10.1175/JCLI‐D‐17‐0436.1
10.1002/2013GL058755
10.5194/tc‐17‐4133‐2023
10.5281/zenodo.16143257
10.1029/2023JD040179
10.1029/2006GL028024
10.5194/tc‐17‐127‐2023
10.5194/tc‐6‐1383‐2012
10.1002/qj.2401
10.1029/2011GL048008
10.1038/nclimate2483
10.1016/j.patrec.2021.06.030
10.1214/aoms/1177729694
10.1175/JCLI‐D‐21‐0539.1
10.1002/qj.2643
10.1038/s41467‐018‐05442‐8
10.1175/1520‐0493(2003)131<0845:mgsiwa>2.0.co;2
10.1126/science.1139426
10.3389/fmars.2021.672477
10.1029/2019GL086749
10.1029/2009GL040546
10.1088/1748‐9326/abe0ec
10.1029/2011GL048807
10.1016/S0377‐2217(03)00002‐X
10.1088/1748‐9326/aade56
10.1175/AIES‐D‐23‐0018.1
10.3390/rs13173413
10.1098/rsif.2013.1162
10.5194/gmdd‐8‐10539‐2015
10.1175/JCLI‐D‐13‐00614.1
10.7265/N5K072F8
10.5670/oceanog.2022.113
10.1029/2020GL088335
10.1126/science.aag2345
10.1016/S0019‐9958(65)90241‐X
10.1002/2014GL059388
10.1175/JCLI‐D‐11‐00209.1
10.1007/s00382‐017‐3939‐8
10.21957/hi1eektr
10.1175/2010JCLI3775.1
10.1007/978-1-4612-0177-9_12
10.5194/esd‐10‐189‐2019
10.1175/JCLI‐D‐19‐0034.1
10.5194/egusphere‐2024‐1873
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2025JH000669
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2025JH000669
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-crossref_primary_10_1029_2025JH0006693
ISSN 2993-5210
IngestDate Thu Aug 21 00:13:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1029_2025JH0006693
ORCID 0000-0002-9563-8925
0000-0002-4697-5781
0000-0001-9975-9479
ParticipantIDs crossref_primary_10_1029_2025JH000669
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_10_1_27_1
e_1_2_10_1_29_1
e_1_2_10_1_46_1
e_1_2_10_1_25_1
e_1_2_10_1_48_1
e_1_2_10_1_42_1
e_1_2_10_1_21_1
e_1_2_10_1_44_1
Tatebe H. (e_1_2_10_2_5_1) 2018
e_1_2_10_1_40_1
Hamilton J. D. (e_1_2_10_1_23_1) 1994
e_1_2_10_1_9_1
e_1_2_10_1_7_1
e_1_2_10_1_16_1
e_1_2_10_1_39_1
e_1_2_10_1_18_1
e_1_2_10_1_12_1
e_1_2_10_1_35_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_56_1
e_1_2_10_1_31_1
e_1_2_10_1_5_1
e_1_2_10_1_52_1
e_1_2_10_1_10_1
e_1_2_10_1_33_1
e_1_2_10_1_54_1
e_1_2_10_1_50_1
e_1_2_10_1_28_1
e_1_2_10_1_49_1
e_1_2_10_1_24_1
e_1_2_10_1_45_1
e_1_2_10_1_26_1
e_1_2_10_1_47_1
e_1_2_10_1_20_1
e_1_2_10_1_41_1
Yukimoto S. (e_1_2_10_2_6_1) 2019
e_1_2_10_1_22_1
e_1_2_10_1_43_1
Froyland G. (e_1_2_10_1_19_1) 2001
Ziehn T. (e_1_2_10_2_7_1) 2019
Alber M. (e_1_2_10_1_3_1) 2019; 20
e_1_2_10_1_8_1
e_1_2_10_1_17_1
e_1_2_10_1_38_1
e_1_2_10_1_2_1
e_1_2_10_1_13_1
IPCC (e_1_2_10_1_30_1) 2023
e_1_2_10_1_34_1
Dix M. (e_1_2_10_2_3_1) 2019
e_1_2_10_1_15_1
e_1_2_10_1_36_1
e_1_2_10_1_57_1
Swart N. C. (e_1_2_10_2_4_1) 2019
e_1_2_10_1_6_1
e_1_2_10_1_53_1
e_1_2_10_1_4_1
e_1_2_10_1_55_1
e_1_2_10_1_11_1
e_1_2_10_1_32_1
e_1_2_10_1_51_1
Boucher O. (e_1_2_10_2_2_1) 2018
References_xml – start-page: 677
  volume-title: Time series analysis
  year: 1994
  ident: e_1_2_10_1_23_1
  doi: 10.1515/9780691218632
– ident: e_1_2_10_1_45_1
  doi: 10.1029/2011JC007084
– ident: e_1_2_10_1_5_1
  doi: 10.1029/2020GL090825
– ident: e_1_2_10_1_9_1
  doi: 10.1175/BAMS‐D‐23‐0163.1
– ident: e_1_2_10_1_42_1
  doi: 10.1175/JCLI‐D‐17‐0427.1
– volume-title: Climate change 2021 – The physical science basis: Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change
  year: 2023
  ident: e_1_2_10_1_30_1
– volume-title: MRI MRI‐ESM2.0 model output prepared for CMIP6 CMIP historical
  year: 2019
  ident: e_1_2_10_2_6_1
– ident: e_1_2_10_1_39_1
  doi: 10.1016/j.patcog.2016.11.008
– ident: e_1_2_10_1_2_1
– ident: e_1_2_10_1_44_1
  doi: 10.1038/s43017‐024‐00542‐0
– ident: e_1_2_10_1_38_1
  doi: 10.1038/s41558‐018‐0204‐z
– ident: e_1_2_10_1_34_1
  doi: 10.1175/JCLI‐D‐17‐0436.1
– ident: e_1_2_10_1_54_1
  doi: 10.1002/2013GL058755
– volume-title: MIROC MIROC6 model output prepared for CMIP6 CMIP historical
  year: 2018
  ident: e_1_2_10_2_5_1
– ident: e_1_2_10_1_15_1
  doi: 10.5194/tc‐17‐4133‐2023
– ident: e_1_2_10_1_25_1
  doi: 10.5281/zenodo.16143257
– ident: e_1_2_10_1_36_1
  doi: 10.1029/2023JD040179
– volume: 20
  year: 2019
  ident: e_1_2_10_1_3_1
  article-title: iNNvestigate neural networks
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_1_26_1
  doi: 10.1029/2006GL028024
– ident: e_1_2_10_1_43_1
  doi: 10.5194/tc‐17‐127‐2023
– ident: e_1_2_10_1_37_1
  doi: 10.5194/tc‐6‐1383‐2012
– ident: e_1_2_10_1_22_1
  doi: 10.1002/qj.2401
– ident: e_1_2_10_1_32_1
  doi: 10.1029/2011GL048008
– ident: e_1_2_10_1_52_1
  doi: 10.1038/nclimate2483
– ident: e_1_2_10_1_31_1
  doi: 10.1016/j.patrec.2021.06.030
– ident: e_1_2_10_1_33_1
  doi: 10.1214/aoms/1177729694
– ident: e_1_2_10_1_35_1
  doi: 10.1175/JCLI‐D‐21‐0539.1
– ident: e_1_2_10_1_24_1
  doi: 10.1002/qj.2643
– ident: e_1_2_10_1_47_1
  doi: 10.1038/s41467‐018‐05442‐8
– ident: e_1_2_10_1_57_1
  doi: 10.1175/1520‐0493(2003)131<0845:mgsiwa>2.0.co;2
– ident: e_1_2_10_1_46_1
  doi: 10.1126/science.1139426
– ident: e_1_2_10_1_48_1
  doi: 10.3389/fmars.2021.672477
– ident: e_1_2_10_1_41_1
  doi: 10.1029/2019GL086749
– ident: e_1_2_10_1_21_1
  doi: 10.1029/2009GL040546
– ident: e_1_2_10_1_8_1
  doi: 10.1088/1748‐9326/abe0ec
– ident: e_1_2_10_1_7_1
  doi: 10.1029/2011GL048807
– ident: e_1_2_10_1_4_1
  doi: 10.1016/S0377‐2217(03)00002‐X
– ident: e_1_2_10_1_51_1
  doi: 10.1088/1748‐9326/aade56
– ident: e_1_2_10_1_18_1
  doi: 10.1175/AIES‐D‐23‐0018.1
– volume-title: CCCMA CANESM5 model output prepared for CMIP6 CMIP historical
  year: 2019
  ident: e_1_2_10_2_4_1
– volume-title: Csiro ACCESS‐ESM1.5 model output prepared for CMIP6 CMIP historical
  year: 2019
  ident: e_1_2_10_2_7_1
– ident: e_1_2_10_1_12_1
  doi: 10.3390/rs13173413
– volume-title: CSIRO‐ARCCSS ACCESS‐CM2 model output prepared for CMIP6 CMIP historical
  year: 2019
  ident: e_1_2_10_2_3_1
– ident: e_1_2_10_1_55_1
  doi: 10.1098/rsif.2013.1162
– volume-title: IPSL IPSL‐CM6A‐LR model output prepared for CMIP6 CMIP historical
  year: 2018
  ident: e_1_2_10_2_2_1
– ident: e_1_2_10_1_16_1
  doi: 10.5194/gmdd‐8‐10539‐2015
– ident: e_1_2_10_1_13_1
  doi: 10.1175/JCLI‐D‐13‐00614.1
– ident: e_1_2_10_1_17_1
  doi: 10.7265/N5K072F8
– ident: e_1_2_10_1_27_1
  doi: 10.5670/oceanog.2022.113
– ident: e_1_2_10_1_10_1
  doi: 10.1029/2020GL088335
– ident: e_1_2_10_1_40_1
  doi: 10.1126/science.aag2345
– ident: e_1_2_10_1_20_1
– ident: e_1_2_10_1_56_1
  doi: 10.1016/S0019‐9958(65)90241‐X
– ident: e_1_2_10_1_50_1
  doi: 10.1002/2014GL059388
– ident: e_1_2_10_1_11_1
  doi: 10.1175/JCLI‐D‐11‐00209.1
– ident: e_1_2_10_1_14_1
  doi: 10.1007/s00382‐017‐3939‐8
– ident: e_1_2_10_1_53_1
  doi: 10.21957/hi1eektr
– ident: e_1_2_10_1_6_1
  doi: 10.1175/2010JCLI3775.1
– start-page: 281
  volume-title: Nonlinear dynamics and statistics
  year: 2001
  ident: e_1_2_10_1_19_1
  doi: 10.1007/978-1-4612-0177-9_12
– ident: e_1_2_10_1_29_1
  doi: 10.5194/esd‐10‐189‐2019
– ident: e_1_2_10_1_28_1
  doi: 10.1175/JCLI‐D‐19‐0034.1
– ident: e_1_2_10_1_49_1
  doi: 10.5194/egusphere‐2024‐1873
SSID ssj0003320807
Score 4.6029587
Snippet The widespread impacts of declining Arctic sea ice necessitate accurate and reliable predictions. While much focus has been placed on subseasonal to seasonal...
SourceID crossref
SourceType Index Database
Title Probabilistic Forecasts of September Arctic Sea Ice Extent at the Interannual Timescale With Data‐Driven Statistical Models
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvXgRRcVn2YOeamrcTdLmWLRSC4rQCr2VPDb2IE1I04ug-BO8-vf8Jc5k89hKhOollKHdLJkvu19n55sh5NQMnLbgvqVZ3Dc0gweB1jE9XWv7l77r6WbHd1DgfHdv9R-Nwdgc12qfStbSInFb3kulruQ_XgUb-BVVsn_wbDEoGOAz-Beu4GG4ruTjhxjeRsxuxWLLTeyy6TlzmZwxFFEisNlHsxujDAoMTvMWXuIeRr1zDaMMCMq6pFINAi4TsFQkU8ADEMs8FeI6xlUxpabpzVDRiz105r-Q2ycRRjkCsnpC0xZ2OZoiq33O4zGZqC5aLCcE9MMgyEURrTJmDk8TRUQp3y7MQ5hNlhnSbakxDGYWSVrZUscwixCIhDyhERW2bK1mCiR55Q6gMyygijcZ9FNCZZc7XX66_2MDLNIS0wN5Zk_UX6-RdQb_QLA5xt1bGb7jnOlSjF_MM5NVwAAX6gAK4VGYy2iLbGZeoV2Jn21SE7Md8rqEHVpgh4YBLbBDJXbA4FDADpXYoU5CATtUwQ4tsEMROxSx8_X-IVFDFdRQiZpdcn7TG131tXzOk0hWPZlUPRy-R-qzcCb2CRXcdbBcHLdFx2A-dy1DZy7zuGXagcvdA3K20pCHK37viGyUSDom9SReiBPgh4nbSOMqjdRf36XDbJo
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Forecasts+of+September+Arctic+Sea+Ice+Extent+at+the+Interannual+Timescale+With+Data%E2%80%90Driven+Statistical+Models&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Hoffman%2C+L.&rft.au=Massonnet%2C+F.&rft.au=Sticker%2C+A.&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon