AGATNet: An Adaptive Graph Attention Network for Bias Correction of CMAQ‐Forecasted PM 2.5 Concentrations Over South Korea

Accurate forecasting of surface PM 2.5 concentrations is essential for enhancing air quality insights and enabling informed decision‐making in a timely manner. Traditional numerical models often exhibit biases originating from uncertainties in input parameters and oversimplified parameterization. Th...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 3
Main Authors Dimri, Rijul, Choi, Yunsoo, Salman, Ahmed Khan, Park, Jincheol, Singh, Deveshwar
Format Journal Article
LanguageEnglish
Published 01.09.2024
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2024JH000244

Cover

Loading…
Abstract Accurate forecasting of surface PM 2.5 concentrations is essential for enhancing air quality insights and enabling informed decision‐making in a timely manner. Traditional numerical models often exhibit biases originating from uncertainties in input parameters and oversimplified parameterization. This study introduces AGATNet, a graph‐based neural network aimed at correcting such biases by adaptively learning the spatial connections between air quality monitoring stations and associated temporal dependency of input features, leveraging masked self‐attentional layers and causal dilated 1D convolution. Trained with PM 2.5 ‐contributing input features provided for the past 24 hr and future 72 hr during the years from 2016 to 2019, AGATNet effectively corrected CMAQ's 72‐hr advance forecasts of surface PM 2.5 concentrations in South Korea for 2021. Across 183 monitoring stations, the application of AGATNet resulted in a substantial improvement in forecast accuracy, with index of agreement increased from 0.67 to 0.96 on +1 hr and root mean square error decreased by 51.56% on average throughout 2021, outperforming other machine learning models such as PM 2.5 ‐GNN, multi‐layer perceptron, and long short‐term memory network. Notably, AGATNet demonstrated the most reliable hit rates for both the highly‐polluted episodes as well as relatively pristine conditions across South Korea, the distributions and occurrences of which were spatially and temporally more closely aligned to the observed values. AGATNet's success across diverse terrains and pollution scenarios in South Korea underscores its robust adaptability as well as the utility of graph neural networks in capturing spatial and temporal variabilities in input features more effectively. Air pollution monitoring stations in South Korea are unevenly distributed across various geographic locations, challenging traditional deep learning models like convolution networks, which assume uniformly spaced data points. Graph neural networks (GNN) are better equipped to handle data that is not uniformly distributed, making them particularly suitable for tasks like air pollution forecasting. AGATNet, a graph neural network, was developed to enhance the accuracy of air pollution forecasts by utilizing data from the previous day and making predictions for the next 3 days to refine PM 2.5 concentration forecasts. Our results show that AGATNet significantly outperforms both traditional forecasting methods and other advanced models, particularly in predicting low‐pollution events that occur frequently and high‐pollution events that occur less frequently. Although AGATNet faces challenges in areas with minimal variation in pollution levels, it still surpasses other methods in performance. This progress highlights AGATNet's potential as an effective tool for air quality monitoring and demonstrates the advantages of using GNN for station data. We integrated graph attention and temporal convolution networks to correct biases in CMAQ‐forecasted surface PM 2.5 concentrations in Korea AGATNet's adaptive learning autonomously understands node connectivity & temporal sequence, eliminating the need for a pre‐existing graph AGATNet outperformed multi‐layer perceptron, long short‐term memory network, and PM 2.5 ‐GNN in correcting biases in 72‐hr advance forecasts of surface PM 2.5 concentrations
AbstractList Accurate forecasting of surface PM 2.5 concentrations is essential for enhancing air quality insights and enabling informed decision‐making in a timely manner. Traditional numerical models often exhibit biases originating from uncertainties in input parameters and oversimplified parameterization. This study introduces AGATNet, a graph‐based neural network aimed at correcting such biases by adaptively learning the spatial connections between air quality monitoring stations and associated temporal dependency of input features, leveraging masked self‐attentional layers and causal dilated 1D convolution. Trained with PM 2.5 ‐contributing input features provided for the past 24 hr and future 72 hr during the years from 2016 to 2019, AGATNet effectively corrected CMAQ's 72‐hr advance forecasts of surface PM 2.5 concentrations in South Korea for 2021. Across 183 monitoring stations, the application of AGATNet resulted in a substantial improvement in forecast accuracy, with index of agreement increased from 0.67 to 0.96 on +1 hr and root mean square error decreased by 51.56% on average throughout 2021, outperforming other machine learning models such as PM 2.5 ‐GNN, multi‐layer perceptron, and long short‐term memory network. Notably, AGATNet demonstrated the most reliable hit rates for both the highly‐polluted episodes as well as relatively pristine conditions across South Korea, the distributions and occurrences of which were spatially and temporally more closely aligned to the observed values. AGATNet's success across diverse terrains and pollution scenarios in South Korea underscores its robust adaptability as well as the utility of graph neural networks in capturing spatial and temporal variabilities in input features more effectively. Air pollution monitoring stations in South Korea are unevenly distributed across various geographic locations, challenging traditional deep learning models like convolution networks, which assume uniformly spaced data points. Graph neural networks (GNN) are better equipped to handle data that is not uniformly distributed, making them particularly suitable for tasks like air pollution forecasting. AGATNet, a graph neural network, was developed to enhance the accuracy of air pollution forecasts by utilizing data from the previous day and making predictions for the next 3 days to refine PM 2.5 concentration forecasts. Our results show that AGATNet significantly outperforms both traditional forecasting methods and other advanced models, particularly in predicting low‐pollution events that occur frequently and high‐pollution events that occur less frequently. Although AGATNet faces challenges in areas with minimal variation in pollution levels, it still surpasses other methods in performance. This progress highlights AGATNet's potential as an effective tool for air quality monitoring and demonstrates the advantages of using GNN for station data. We integrated graph attention and temporal convolution networks to correct biases in CMAQ‐forecasted surface PM 2.5 concentrations in Korea AGATNet's adaptive learning autonomously understands node connectivity & temporal sequence, eliminating the need for a pre‐existing graph AGATNet outperformed multi‐layer perceptron, long short‐term memory network, and PM 2.5 ‐GNN in correcting biases in 72‐hr advance forecasts of surface PM 2.5 concentrations
Author Salman, Ahmed Khan
Choi, Yunsoo
Dimri, Rijul
Park, Jincheol
Singh, Deveshwar
Author_xml – sequence: 1
  givenname: Rijul
  orcidid: 0000-0002-1630-6368
  surname: Dimri
  fullname: Dimri, Rijul
  organization: Department of Earth and Atmospheric Sciences University of Houston Houston TX USA
– sequence: 2
  givenname: Yunsoo
  orcidid: 0000-0002-4488-7833
  surname: Choi
  fullname: Choi, Yunsoo
  organization: Department of Earth and Atmospheric Sciences University of Houston Houston TX USA
– sequence: 3
  givenname: Ahmed Khan
  surname: Salman
  fullname: Salman, Ahmed Khan
  organization: Department of Earth and Atmospheric Sciences University of Houston Houston TX USA
– sequence: 4
  givenname: Jincheol
  surname: Park
  fullname: Park, Jincheol
  organization: Department of Earth and Atmospheric Sciences University of Houston Houston TX USA
– sequence: 5
  givenname: Deveshwar
  surname: Singh
  fullname: Singh, Deveshwar
  organization: Department of Earth and Atmospheric Sciences University of Houston Houston TX USA
BookMark eNqVj01OAkEQhTsGEhHYeYA6gGBND0THXTsRCAZ_IvtJZ6gJrdg9qW4xJiw8gmf0JDTEBTFx4epV6n1VL-9ENKyzJMRpgv0EZXYuUQ6mE8QogyPRklmW9oYywcbBfCy63j9HJk0lXuJFS2zUWM3vKFyBsqAWug5mTTBmXS9BhUA2GGchAu-OX6ByDNdGe8gdM5V7z1WQz9Tj9-fXyMWd9oEW8DAD2R9GzJbxBesd6eF-TQxP7i0s4TayuiOalV556v5oW5yNbub5pFey856pKmo2r5o_igSLXcnisGTaFvIXXpqwj4qJZvXX0b8ytiefaUA
CitedBy_id crossref_primary_10_1029_2024JD042477
Cites_doi 10.1016/j.envint.2023.107971
10.1016/j.scitotenv.2023.168179
10.1016/j.neucom.2015.07.113
10.4209/aaqr.2019.08.0408
10.1038/s43247‐021‐00164‐0
10.5194/gmd‐6‐883‐2013
10.1029/2022jd038019
10.1007/s00521‐021‐06300‐3
10.1021/acs.est.1c05578
10.1109/MDM55031.2022.00041
10.1016/j.atmosenv.2022.119096
10.1145/3397536.3422208
10.1016/j.eswa.2020.114513
10.1016/j.envpol.2023.122223
10.1088/1742‐6596/1229/1/012078
10.1016/j.envpol.2022.120404
10.1016/j.atmosenv.2021.118376
10.3390/atmos11060618
10.1016/j.atmosenv.2023.120192
10.5194/gmd‐13‐3489‐2020
10.5281/zenodo.10963116
10.1098/rspa.2021.0097
10.1175/AIES‐D‐23‐0055.1
10.1115/1.2128636
10.5194/amt‐16‐3039‐2023
10.1029/2021MS002475
10.5194/gmd‐8‐3733‐2015
10.1016/j.chemosphere.2023.139071
10.5194/gmd‐14‐2867‐2021
10.1109/CVPR.2017.113
10.1016/j.asoc.2021.107988
10.5194/acp‐15‐5325‐2015
10.1016/j.scs.2023.104445
10.1016/j.jclepro.2023.138880
10.1056/nejmoa1702747
10.1029/2019JD030641
10.1002/2015JD023674
10.1016/j.eswa.2023.121951
10.1137/19M1244433
10.1016/j.envpol.2022.119419
10.1016/j.cnsns.2022.106780
10.1142/S0218127491000634
10.5281/zenodo.11455075
10.1007/s13143‐022‐00293‐2
10.1029/2019JD032293
10.1029/2023EA002911
10.1016/j.chaos.2022.112405
10.1109/TIM.2021.3091511
10.2151/sola.2023‐029
10.1029/2021MS002898
10.1016/j.atmosres.2024.107283
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2024JH000244
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2024JH000244
GroupedDBID 0R~
24P
AAYXX
ACCMX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-crossref_primary_10_1029_2024JH0002443
ISSN 2993-5210
IngestDate Tue Jul 01 03:43:13 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1029_2024JH0002443
ORCID 0000-0002-4488-7833
0000-0002-1630-6368
ParticipantIDs crossref_citationtrail_10_1029_2024JH000244
crossref_primary_10_1029_2024JH000244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
Kolen J. F. (e_1_2_8_26_1) 2001
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Mazumder R. (e_1_2_8_36_1) 2010; 11
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – start-page: 237
  volume-title: A field guide to dynamical recurrent networks
  year: 2001
  ident: e_1_2_8_26_1
– volume: 11
  start-page: 2287
  year: 2010
  ident: e_1_2_8_36_1
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: Journal of Machine Learning Research: JMLR
– ident: e_1_2_8_58_1
  doi: 10.1016/j.envint.2023.107971
– ident: e_1_2_8_19_1
  doi: 10.1016/j.scitotenv.2023.168179
– ident: e_1_2_8_54_1
– ident: e_1_2_8_59_1
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neucom.2015.07.113
– ident: e_1_2_8_35_1
  doi: 10.4209/aaqr.2019.08.0408
– ident: e_1_2_8_37_1
  doi: 10.1038/s43247‐021‐00164‐0
– ident: e_1_2_8_3_1
  doi: 10.5194/gmd‐6‐883‐2013
– ident: e_1_2_8_46_1
  doi: 10.1029/2022jd038019
– ident: e_1_2_8_66_1
  doi: 10.1007/s00521‐021‐06300‐3
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.est.1c05578
– ident: e_1_2_8_28_1
– ident: e_1_2_8_40_1
– ident: e_1_2_8_16_1
  doi: 10.1109/MDM55031.2022.00041
– ident: e_1_2_8_44_1
  doi: 10.1016/j.atmosenv.2022.119096
– ident: e_1_2_8_63_1
  doi: 10.1145/3397536.3422208
– ident: e_1_2_8_64_1
  doi: 10.1016/j.eswa.2020.114513
– ident: e_1_2_8_4_1
– ident: e_1_2_8_38_1
  doi: 10.1016/j.envpol.2023.122223
– ident: e_1_2_8_33_1
  doi: 10.1088/1742‐6596/1229/1/012078
– ident: e_1_2_8_51_1
  doi: 10.1016/j.envpol.2022.120404
– ident: e_1_2_8_52_1
  doi: 10.1016/j.atmosenv.2021.118376
– ident: e_1_2_8_21_1
  doi: 10.3390/atmos11060618
– ident: e_1_2_8_49_1
  doi: 10.1016/j.atmosenv.2023.120192
– ident: e_1_2_8_45_1
  doi: 10.5194/gmd‐13‐3489‐2020
– ident: e_1_2_8_13_1
  doi: 10.5281/zenodo.10963116
– ident: e_1_2_8_17_1
  doi: 10.1098/rspa.2021.0097
– ident: e_1_2_8_23_1
– ident: e_1_2_8_43_1
  doi: 10.1175/AIES‐D‐23‐0055.1
– ident: e_1_2_8_8_1
  doi: 10.1115/1.2128636
– ident: e_1_2_8_29_1
– ident: e_1_2_8_41_1
  doi: 10.5194/amt‐16‐3039‐2023
– ident: e_1_2_8_47_1
  doi: 10.1029/2021MS002475
– ident: e_1_2_8_14_1
  doi: 10.5194/gmd‐8‐3733‐2015
– ident: e_1_2_8_9_1
  doi: 10.1016/j.chemosphere.2023.139071
– ident: e_1_2_8_2_1
  doi: 10.5194/gmd‐14‐2867‐2021
– ident: e_1_2_8_32_1
  doi: 10.1109/CVPR.2017.113
– ident: e_1_2_8_20_1
  doi: 10.1016/j.asoc.2021.107988
– ident: e_1_2_8_7_1
  doi: 10.5194/acp‐15‐5325‐2015
– ident: e_1_2_8_57_1
  doi: 10.1016/j.scs.2023.104445
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jclepro.2023.138880
– ident: e_1_2_8_25_1
– ident: e_1_2_8_12_1
  doi: 10.1056/nejmoa1702747
– ident: e_1_2_8_22_1
  doi: 10.1029/2019JD030641
– ident: e_1_2_8_15_1
  doi: 10.1002/2015JD023674
– ident: e_1_2_8_62_1
  doi: 10.1016/j.eswa.2023.121951
– ident: e_1_2_8_5_1
  doi: 10.1137/19M1244433
– ident: e_1_2_8_55_1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.envpol.2022.119419
– ident: e_1_2_8_50_1
  doi: 10.1016/j.cnsns.2022.106780
– ident: e_1_2_8_39_1
  doi: 10.1142/S0218127491000634
– ident: e_1_2_8_27_1
– ident: e_1_2_8_60_1
– ident: e_1_2_8_48_1
  doi: 10.5281/zenodo.11455075
– ident: e_1_2_8_18_1
  doi: 10.1007/s13143‐022‐00293‐2
– ident: e_1_2_8_65_1
  doi: 10.1029/2019JD032293
– ident: e_1_2_8_61_1
  doi: 10.1029/2023EA002911
– ident: e_1_2_8_30_1
– ident: e_1_2_8_56_1
  doi: 10.1016/j.chaos.2022.112405
– ident: e_1_2_8_10_1
  doi: 10.1109/TIM.2021.3091511
– ident: e_1_2_8_31_1
  doi: 10.2151/sola.2023‐029
– ident: e_1_2_8_34_1
  doi: 10.1029/2021MS002898
– ident: e_1_2_8_53_1
  doi: 10.1016/j.atmosres.2024.107283
SSID ssj0003320807
Score 4.5346437
Snippet Accurate forecasting of surface PM 2.5 concentrations is essential for enhancing air quality insights and enabling informed decision‐making in a timely manner....
SourceID crossref
SourceType Index Database
Enrichment Source
Title AGATNet: An Adaptive Graph Attention Network for Bias Correction of CMAQ‐Forecasted PM 2.5 Concentrations Over South Korea
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdXgV56QaCCoKVoDnAyCY6dGOjNBEoU5BBQKtFTtLaXOijYEXUuFUJ9hL5OX6dPwszu-iOVkQIXK1rZm9XOT7vj8X9mGdsNw3bQdkRYD3lg1Vu3_nHdP3LwrdX0RZMfOQ4XlO_s9Z3ut1bvpn1Tq_0tqZZmqd8IflXmlbzFqtiGdqUs2VdYNu8UG_A32hevaGG8LmRj99wd9kUW3HNDPpVCoHMqQm24aaqljH0l9ZaKwpMxp1M6H-RCp3zFjude5ZoHOqoz4BQDNQaeYTXalBOoFJxKM3eJs2TIg_eMC7yXv-Dd_hDJNENAFxSKGnTMUURu7SQLyOisuulsXhFwOr5XGfDX47tCudiJEtn4fRb_TJI8NsQnOorrRri1GxdRAfxAK8F74xjhTCblGIfVykVceim0SGWIjob6giMq2rK1vISsXblDmBYVWKU_6XVpO1DVJ-cLcf-3QeayRfnB3joelZ9eYu8sfEOhU0O8pyK8Z9uWqZL183HqtAvs4KDcQckhKnk2w1W2oo0GruJrjdVE_IE9ara-gBtDRhZIsiAnCzRZgGQBkQUFWZDcApH17_efgikYeIBMwTxTQEyBZAokU-ts_-vZsNOtZ0MeTVVRlFHV3NgbbDlOYrHJwPF50Ay476NDhD6wyQVNmmmLQ7NphsHhFjPyLgNdnZ4OSZlUdrzF9hYawMcF7_vE3hfYbbPl9GEmPqOzmfo7MkizI437DGEhghI
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AGATNet%3A+An+Adaptive+Graph+Attention+Network+for+Bias+Correction+of+CMAQ%E2%80%90Forecasted+PM+2.5+Concentrations+Over+South+Korea&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Dimri%2C+Rijul&rft.au=Choi%2C+Yunsoo&rft.au=Salman%2C+Ahmed+Khan&rft.au=Park%2C+Jincheol&rft.date=2024-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon