Theoretical Investigation of Quantum Capacitance of M 2 C MXenes as Supercapacitor Electrode

MXenes are promising electrode materials due to their excellent performance. However, the quantum capacitance ( C diff ) and surface storage charge ( Q ) of bare M 2 C are little reported theoretically up to now. Herein, C diff and Q of 12 M 2 C MXenes related with 3d, 4d, and 5d transition metal (T...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b) Vol. 260; no. 12
Main Authors Yin, She-Hui, Li, Xiao-Hong, Cui, Hong-Ling
Format Journal Article
LanguageEnglish
Published 01.12.2023
Online AccessGet full text

Cover

Loading…
Abstract MXenes are promising electrode materials due to their excellent performance. However, the quantum capacitance ( C diff ) and surface storage charge ( Q ) of bare M 2 C are little reported theoretically up to now. Herein, C diff and Q of 12 M 2 C MXenes related with 3d, 4d, and 5d transition metal (TM) atoms are investigated in aqueous and ionic/organic systems. All M 2 C MXenes are metallic. M 2 C with 5d TM are cathode materials. M 2 C with 4d TM are also cathode materials except Y 2 C MXene. For M 2 C with 3d TM, Sc 2 C and Mn 2 C are cathode materials, while Ti 2 C, V 2 C, and Cr 2 C are anode materials, especially for Ti 2 C and V 2 C with larger | Q p |/| Q n | and Q p . The broadened voltage maintains the type of electrode materials. W 2 C is the least promising cathode material in broad voltage.
AbstractList MXenes are promising electrode materials due to their excellent performance. However, the quantum capacitance ( C diff ) and surface storage charge ( Q ) of bare M 2 C are little reported theoretically up to now. Herein, C diff and Q of 12 M 2 C MXenes related with 3d, 4d, and 5d transition metal (TM) atoms are investigated in aqueous and ionic/organic systems. All M 2 C MXenes are metallic. M 2 C with 5d TM are cathode materials. M 2 C with 4d TM are also cathode materials except Y 2 C MXene. For M 2 C with 3d TM, Sc 2 C and Mn 2 C are cathode materials, while Ti 2 C, V 2 C, and Cr 2 C are anode materials, especially for Ti 2 C and V 2 C with larger | Q p |/| Q n | and Q p . The broadened voltage maintains the type of electrode materials. W 2 C is the least promising cathode material in broad voltage.
Author Yin, She-Hui
Li, Xiao-Hong
Cui, Hong-Ling
Author_xml – sequence: 1
  givenname: She-Hui
  surname: Yin
  fullname: Yin, She-Hui
  organization: Physical Teaching and Research of Fundamental Teaching Section Henan Polytechnic Institute Nanyang 473000 China
– sequence: 2
  givenname: Xiao-Hong
  orcidid: 0000-0003-2450-4476
  surname: Li
  fullname: Li, Xiao-Hong
  organization: College of Physics and Engineering Henan University of Science and Technology Luoyang 471023 China
– sequence: 3
  givenname: Hong-Ling
  surname: Cui
  fullname: Cui, Hong-Ling
  organization: College of Physics and Engineering Henan University of Science and Technology Luoyang 471023 China
BookMark eNqVzzFPwzAQBWALFYmUsjLfH0g427Rp5qgVDB0qOjAgWa65gFFqRz6nUv89ikDsTE96em_45mIWYiAh7iVWElE9DMzHSqHSiHq9uhKFXCpZ6mYpZ6JAXWMpm1rdiDnzF-JjLZtVId4OnxQTZe9sD8_hTJz9h80-Bogd7Ecb8niC1g7W-WyDo6negYIWdq8UiMEyvIwDJfeziQk2Pbmc4jstxHVne6a737wV1XZzaJ9KlyJzos4MyZ9suhiJZjKYyWD-DPrfh2_UL1Fu
Cites_doi 10.1021/jp401820b
10.3390/nano10040695
10.1063/1.1803614
10.1039/D0RA06773C
10.1063/1.3382344
10.1021/acs.chemrev.6b00558
10.1088/2515-7655/ab9b1d
10.1103/PhysRevLett.77.3865
10.1021/nl802558y
10.1021/acs.jpcc.9b03563
10.1021/acs.energyfuels.2c02808
10.1039/C8NR01550C
10.1021/acs.jpcc.5b10366
10.1038/natrevmats.2016.98
10.1038/nphoton.2014.271
10.1038/nenergy.2017.105
10.1016/j.ceramint.2017.06.016
10.1016/j.cplett.2021.138666
10.1002/aelm.202000967
10.1016/j.carbon.2016.07.005
10.1016/j.carbon.2013.11.057
10.1002/jcc.20495
10.1063/1.99649
10.1039/C9SC01662G
10.1016/j.matdes.2017.05.052
10.1002/adma.201304138
10.1038/nnano.2008.67
10.1038/nenergy.2017.89
10.1103/PhysRevB.54.11169
10.1063/1.4870515
10.1103/PhysRevB.13.5188
10.1063/1.2182009
10.1002/er.3707
10.1103/PhysRevB.87.245307
10.1557/mrc.2012.25
10.1016/j.est.2023.106703
10.1021/jp507336x
10.1016/j.commatsci.2012.07.011
10.1021/acsanm.2c00533
10.1016/j.electacta.2021.138432
10.1039/C3CP52590B
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/pssb.202300386
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
ExternalDocumentID 10_1002_pssb_202300386
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BY8
CITATION
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FEDTE
G.N
GNP
GODZA
GYQRN
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SAMSI
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
ID FETCH-crossref_primary_10_1002_pssb_2023003863
ISSN 0370-1972
IngestDate Fri Aug 23 00:16:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1002_pssb_2023003863
ORCID 0000-0003-2450-4476
ParticipantIDs crossref_primary_10_1002_pssb_202300386
PublicationCentury 2000
PublicationDate 2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle physica status solidi (b)
PublicationYear 2023
References e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
Abhinandan P. (e_1_2_8_4_1) 2022; 54
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – ident: e_1_2_8_43_1
  doi: 10.1021/jp401820b
– ident: e_1_2_8_18_1
  doi: 10.3390/nano10040695
– ident: e_1_2_8_35_1
  doi: 10.1063/1.1803614
– ident: e_1_2_8_7_1
  doi: 10.1039/D0RA06773C
– ident: e_1_2_8_33_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.chemrev.6b00558
– ident: e_1_2_8_23_1
  doi: 10.1088/2515-7655/ab9b1d
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_15_1
  doi: 10.1021/nl802558y
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.jpcc.9b03563
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.energyfuels.2c02808
– ident: e_1_2_8_27_1
  doi: 10.1039/C8NR01550C
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.jpcc.5b10366
– ident: e_1_2_8_29_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_8_14_1
  doi: 10.1038/nphoton.2014.271
– ident: e_1_2_8_24_1
  doi: 10.1038/nenergy.2017.105
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ceramint.2017.06.016
– volume: 54
  start-page: 05355
  year: 2022
  ident: e_1_2_8_4_1
  publication-title: J. Energy Storage
  contributor:
    fullname: Abhinandan P.
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cplett.2021.138666
– ident: e_1_2_8_17_1
  doi: 10.1002/aelm.202000967
– ident: e_1_2_8_36_1
  doi: 10.1016/j.carbon.2016.07.005
– ident: e_1_2_8_9_1
  doi: 10.1016/j.carbon.2013.11.057
– ident: e_1_2_8_32_1
  doi: 10.1002/jcc.20495
– ident: e_1_2_8_10_1
  doi: 10.1063/1.99649
– ident: e_1_2_8_16_1
  doi: 10.1039/C9SC01662G
– ident: e_1_2_8_20_1
  doi: 10.1016/j.matdes.2017.05.052
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_8_11_1
  doi: 10.1038/nnano.2008.67
– ident: e_1_2_8_26_1
  doi: 10.1038/nenergy.2017.89
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_28_1
  doi: 10.1063/1.4870515
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_8_37_1
  doi: 10.1063/1.2182009
– ident: e_1_2_8_5_1
  doi: 10.1002/er.3707
– ident: e_1_2_8_22_1
  doi: 10.1038/nenergy.2017.105
– ident: e_1_2_8_41_1
  doi: 10.1103/PhysRevB.87.245307
– ident: e_1_2_8_44_1
  doi: 10.1557/mrc.2012.25
– ident: e_1_2_8_2_1
  doi: 10.1016/j.est.2023.106703
– ident: e_1_2_8_39_1
  doi: 10.1021/jp507336x
– ident: e_1_2_8_42_1
  doi: 10.1016/j.commatsci.2012.07.011
– ident: e_1_2_8_6_1
  doi: 10.1021/acsanm.2c00533
– ident: e_1_2_8_38_1
  doi: 10.1016/j.electacta.2021.138432
– ident: e_1_2_8_8_1
  doi: 10.1039/C3CP52590B
SSID ssj0047196
ssj0007131
Score 4.867237
Snippet MXenes are promising electrode materials due to their excellent performance. However, the quantum capacitance ( C diff ) and surface storage charge ( Q ) of...
SourceID crossref
SourceType Aggregation Database
Title Theoretical Investigation of Quantum Capacitance of M 2 C MXenes as Supercapacitor Electrode
Volume 260
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS4RAFB9qI-gSfdI3cwg6yGw6fuExZEOiDWoLDALRUclD67Lqpb--N87oanjYuogM6qrvt-89Z37v9xC6ZlRPzUiLiK0lFjGMNCWOGvEmAk4ShWbI4rrX4fTJ8t6MB9_0VyT2urqkjMbse7Cu5D9WhTGwK6-S_YNl24vCAOyDfWELFobtujZuqxA7ghkiBXyu4KVVX4oL4ZBlZV0awPkuClVcZepzH8ebzMyqRbJk4ph8qUxEW5y4xxAS0x8hn3coq0KBh8rijOemUWci4V2oEcw-E-JVWUv0qdkCfhbmxMtllKwZ2aJbNgyRxyZ6yskHqneIHLLoylYJ71wmwon0oVQjuiN1ZKWTpaJrQIMmOui9hRrsoiiiMf8xvmo5IJP9K3y1pEIhwEwDfn7Qnr-Jtij4oHoF_2WlLAbf5i0VCOKzI9a05cM04p4qve3fTCd56WQhr3toV34-4DuBhX20kcwP0HZN42XFIfroIAL3EIHzFEtE4A4i-PAUU-xigQgcFriPCNwi4giN7yevrkeamwsWQqokGH4n-jEazfN5coIwJIS6Zpl2bIaWwagZxo7F1NCC_6lNmZacops1L3q29pHnaGeFpQs0KpdVcgmpXRld1Ub6AbHiT4Y
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Investigation+of+Quantum+Capacitance+of+M+2+C+MXenes+as+Supercapacitor+Electrode&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Yin%2C+She-Hui&rft.au=Li%2C+Xiao-Hong&rft.au=Cui%2C+Hong-Ling&rft.date=2023-12-01&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=260&rft.issue=12&rft_id=info:doi/10.1002%2Fpssb.202300386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssb_202300386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon