Theoretical Investigation of Quantum Capacitance of M 2 C MXenes as Supercapacitor Electrode
MXenes are promising electrode materials due to their excellent performance. However, the quantum capacitance ( C diff ) and surface storage charge ( Q ) of bare M 2 C are little reported theoretically up to now. Herein, C diff and Q of 12 M 2 C MXenes related with 3d, 4d, and 5d transition metal (T...
Saved in:
Published in | physica status solidi (b) Vol. 260; no. 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.12.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | MXenes are promising electrode materials due to their excellent performance. However, the quantum capacitance (
C
diff
) and surface storage charge (
Q
) of bare M
2
C are little reported theoretically up to now. Herein,
C
diff
and
Q
of 12 M
2
C MXenes related with 3d, 4d, and 5d transition metal (TM) atoms are investigated in aqueous and ionic/organic systems. All M
2
C MXenes are metallic. M
2
C with 5d TM are cathode materials. M
2
C with 4d TM are also cathode materials except Y
2
C MXene. For M
2
C with 3d TM, Sc
2
C and Mn
2
C are cathode materials, while Ti
2
C, V
2
C, and Cr
2
C are anode materials, especially for Ti
2
C and V
2
C with larger |
Q
p
|/|
Q
n
| and
Q
p
. The broadened voltage maintains the type of electrode materials. W
2
C is the least promising cathode material in broad voltage. |
---|---|
AbstractList | MXenes are promising electrode materials due to their excellent performance. However, the quantum capacitance (
C
diff
) and surface storage charge (
Q
) of bare M
2
C are little reported theoretically up to now. Herein,
C
diff
and
Q
of 12 M
2
C MXenes related with 3d, 4d, and 5d transition metal (TM) atoms are investigated in aqueous and ionic/organic systems. All M
2
C MXenes are metallic. M
2
C with 5d TM are cathode materials. M
2
C with 4d TM are also cathode materials except Y
2
C MXene. For M
2
C with 3d TM, Sc
2
C and Mn
2
C are cathode materials, while Ti
2
C, V
2
C, and Cr
2
C are anode materials, especially for Ti
2
C and V
2
C with larger |
Q
p
|/|
Q
n
| and
Q
p
. The broadened voltage maintains the type of electrode materials. W
2
C is the least promising cathode material in broad voltage. |
Author | Yin, She-Hui Li, Xiao-Hong Cui, Hong-Ling |
Author_xml | – sequence: 1 givenname: She-Hui surname: Yin fullname: Yin, She-Hui organization: Physical Teaching and Research of Fundamental Teaching Section Henan Polytechnic Institute Nanyang 473000 China – sequence: 2 givenname: Xiao-Hong orcidid: 0000-0003-2450-4476 surname: Li fullname: Li, Xiao-Hong organization: College of Physics and Engineering Henan University of Science and Technology Luoyang 471023 China – sequence: 3 givenname: Hong-Ling surname: Cui fullname: Cui, Hong-Ling organization: College of Physics and Engineering Henan University of Science and Technology Luoyang 471023 China |
BookMark | eNqVzzFPwzAQBWALFYmUsjLfH0g427Rp5qgVDB0qOjAgWa65gFFqRz6nUv89ikDsTE96em_45mIWYiAh7iVWElE9DMzHSqHSiHq9uhKFXCpZ6mYpZ6JAXWMpm1rdiDnzF-JjLZtVId4OnxQTZe9sD8_hTJz9h80-Bogd7Ecb8niC1g7W-WyDo6negYIWdq8UiMEyvIwDJfeziQk2Pbmc4jstxHVne6a737wV1XZzaJ9KlyJzos4MyZ9suhiJZjKYyWD-DPrfh2_UL1Fu |
Cites_doi | 10.1021/jp401820b 10.3390/nano10040695 10.1063/1.1803614 10.1039/D0RA06773C 10.1063/1.3382344 10.1021/acs.chemrev.6b00558 10.1088/2515-7655/ab9b1d 10.1103/PhysRevLett.77.3865 10.1021/nl802558y 10.1021/acs.jpcc.9b03563 10.1021/acs.energyfuels.2c02808 10.1039/C8NR01550C 10.1021/acs.jpcc.5b10366 10.1038/natrevmats.2016.98 10.1038/nphoton.2014.271 10.1038/nenergy.2017.105 10.1016/j.ceramint.2017.06.016 10.1016/j.cplett.2021.138666 10.1002/aelm.202000967 10.1016/j.carbon.2016.07.005 10.1016/j.carbon.2013.11.057 10.1002/jcc.20495 10.1063/1.99649 10.1039/C9SC01662G 10.1016/j.matdes.2017.05.052 10.1002/adma.201304138 10.1038/nnano.2008.67 10.1038/nenergy.2017.89 10.1103/PhysRevB.54.11169 10.1063/1.4870515 10.1103/PhysRevB.13.5188 10.1063/1.2182009 10.1002/er.3707 10.1103/PhysRevB.87.245307 10.1557/mrc.2012.25 10.1016/j.est.2023.106703 10.1021/jp507336x 10.1016/j.commatsci.2012.07.011 10.1021/acsanm.2c00533 10.1016/j.electacta.2021.138432 10.1039/C3CP52590B |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/pssb.202300386 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3951 |
ExternalDocumentID | 10_1002_pssb_202300386 |
GroupedDBID | .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AANLZ AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUQT AEUYR AFFNX AFFPM AFGKR AFPWT AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB AUFTA AZBYB AZFZN AZVAB BAFTC BHBCM BMNLL BMXJE BNHUX BROTX BY8 CITATION D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 FEDTE G.N GNP GODZA GYQRN H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SAMSI W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT |
ID | FETCH-crossref_primary_10_1002_pssb_2023003863 |
ISSN | 0370-1972 |
IngestDate | Fri Aug 23 00:16:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1002_pssb_2023003863 |
ORCID | 0000-0003-2450-4476 |
ParticipantIDs | crossref_primary_10_1002_pssb_202300386 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | physica status solidi (b) |
PublicationYear | 2023 |
References | e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 Abhinandan P. (e_1_2_8_4_1) 2022; 54 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – ident: e_1_2_8_43_1 doi: 10.1021/jp401820b – ident: e_1_2_8_18_1 doi: 10.3390/nano10040695 – ident: e_1_2_8_35_1 doi: 10.1063/1.1803614 – ident: e_1_2_8_7_1 doi: 10.1039/D0RA06773C – ident: e_1_2_8_33_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_12_1 doi: 10.1021/acs.chemrev.6b00558 – ident: e_1_2_8_23_1 doi: 10.1088/2515-7655/ab9b1d – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_15_1 doi: 10.1021/nl802558y – ident: e_1_2_8_13_1 doi: 10.1021/acs.jpcc.9b03563 – ident: e_1_2_8_3_1 doi: 10.1021/acs.energyfuels.2c02808 – ident: e_1_2_8_27_1 doi: 10.1039/C8NR01550C – ident: e_1_2_8_19_1 doi: 10.1021/acs.jpcc.5b10366 – ident: e_1_2_8_29_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_8_14_1 doi: 10.1038/nphoton.2014.271 – ident: e_1_2_8_24_1 doi: 10.1038/nenergy.2017.105 – ident: e_1_2_8_40_1 doi: 10.1016/j.ceramint.2017.06.016 – volume: 54 start-page: 05355 year: 2022 ident: e_1_2_8_4_1 publication-title: J. Energy Storage contributor: fullname: Abhinandan P. – ident: e_1_2_8_21_1 doi: 10.1016/j.cplett.2021.138666 – ident: e_1_2_8_17_1 doi: 10.1002/aelm.202000967 – ident: e_1_2_8_36_1 doi: 10.1016/j.carbon.2016.07.005 – ident: e_1_2_8_9_1 doi: 10.1016/j.carbon.2013.11.057 – ident: e_1_2_8_32_1 doi: 10.1002/jcc.20495 – ident: e_1_2_8_10_1 doi: 10.1063/1.99649 – ident: e_1_2_8_16_1 doi: 10.1039/C9SC01662G – ident: e_1_2_8_20_1 doi: 10.1016/j.matdes.2017.05.052 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201304138 – ident: e_1_2_8_11_1 doi: 10.1038/nnano.2008.67 – ident: e_1_2_8_26_1 doi: 10.1038/nenergy.2017.89 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_28_1 doi: 10.1063/1.4870515 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_8_37_1 doi: 10.1063/1.2182009 – ident: e_1_2_8_5_1 doi: 10.1002/er.3707 – ident: e_1_2_8_22_1 doi: 10.1038/nenergy.2017.105 – ident: e_1_2_8_41_1 doi: 10.1103/PhysRevB.87.245307 – ident: e_1_2_8_44_1 doi: 10.1557/mrc.2012.25 – ident: e_1_2_8_2_1 doi: 10.1016/j.est.2023.106703 – ident: e_1_2_8_39_1 doi: 10.1021/jp507336x – ident: e_1_2_8_42_1 doi: 10.1016/j.commatsci.2012.07.011 – ident: e_1_2_8_6_1 doi: 10.1021/acsanm.2c00533 – ident: e_1_2_8_38_1 doi: 10.1016/j.electacta.2021.138432 – ident: e_1_2_8_8_1 doi: 10.1039/C3CP52590B |
SSID | ssj0047196 ssj0007131 |
Score | 4.867237 |
Snippet | MXenes are promising electrode materials due to their excellent performance. However, the quantum capacitance (
C
diff
) and surface storage charge (
Q
) of... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Theoretical Investigation of Quantum Capacitance of M 2 C MXenes as Supercapacitor Electrode |
Volume | 260 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS4RAFB9qI-gSfdI3cwg6yGw6fuExZEOiDWoLDALRUclD67Lqpb--N87oanjYuogM6qrvt-89Z37v9xC6ZlRPzUiLiK0lFjGMNCWOGvEmAk4ShWbI4rrX4fTJ8t6MB9_0VyT2urqkjMbse7Cu5D9WhTGwK6-S_YNl24vCAOyDfWELFobtujZuqxA7ghkiBXyu4KVVX4oL4ZBlZV0awPkuClVcZepzH8ebzMyqRbJk4ph8qUxEW5y4xxAS0x8hn3coq0KBh8rijOemUWci4V2oEcw-E-JVWUv0qdkCfhbmxMtllKwZ2aJbNgyRxyZ6yskHqneIHLLoylYJ71wmwon0oVQjuiN1ZKWTpaJrQIMmOui9hRrsoiiiMf8xvmo5IJP9K3y1pEIhwEwDfn7Qnr-Jtij4oHoF_2WlLAbf5i0VCOKzI9a05cM04p4qve3fTCd56WQhr3toV34-4DuBhX20kcwP0HZN42XFIfroIAL3EIHzFEtE4A4i-PAUU-xigQgcFriPCNwi4giN7yevrkeamwsWQqokGH4n-jEazfN5coIwJIS6Zpl2bIaWwagZxo7F1NCC_6lNmZacops1L3q29pHnaGeFpQs0KpdVcgmpXRld1Ub6AbHiT4Y |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Investigation+of+Quantum+Capacitance+of+M+2+C+MXenes+as+Supercapacitor+Electrode&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Yin%2C+She-Hui&rft.au=Li%2C+Xiao-Hong&rft.au=Cui%2C+Hong-Ling&rft.date=2023-12-01&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=260&rft.issue=12&rft_id=info:doi/10.1002%2Fpssb.202300386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssb_202300386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon |