The Anomalous Photo‐Nernst Effect of Massive Dirac Fermions In HfTe 5

The quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse (thermo)electric conductivity. However, time‐reversal symmetry typically constrains the direct observation and exploitation of anomalous transport to mag...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 3; no. 3
Main Authors Singh, Maanwinder P., Kiemle, Jonas, Xu, Chen, Schmunk, Waldemar, Dong, Qingxin, Chen, Genfu, Meng, Tobias, Kastl, Christoph
Format Journal Article
LanguageEnglish
Published 01.03.2024
Online AccessGet full text
ISSN2751-1200
2751-1200
DOI10.1002/apxr.202300099

Cover

Loading…
Abstract The quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse (thermo)electric conductivity. However, time‐reversal symmetry typically constrains the direct observation and exploitation of anomalous transport to magnetic compounds. Here, it is demonstrated the anomalous Hall and Nernst conductivities are essential for describing the optoelectronic transport in thin films of the non‐magnetic, weakly gapped semimetal HfTe 5 subject to an external magnetic field. A focused photoexcitation adresses the symmetries of the local Nernst conductivity, which unveils a hitherto hidden, anomalous photo‐Nernst effect of three‐dimensional (3D) massive Dirac fermions. The experimental temperature and density dependencies are compared with a semiclassical Boltzmann transport model. For HfTe 5 thin films with the Fermi level close to the gap, the model suggests that the anomalous photo‐Nernst currents originate from an intrinsic Berry curvature mechanism, where the Zeeman interaction effectively breaks time‐reversal symmetry of the massive Dirac fermions already at moderate external magnetic fields.
AbstractList The quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse (thermo)electric conductivity. However, time‐reversal symmetry typically constrains the direct observation and exploitation of anomalous transport to magnetic compounds. Here, it is demonstrated the anomalous Hall and Nernst conductivities are essential for describing the optoelectronic transport in thin films of the non‐magnetic, weakly gapped semimetal HfTe 5 subject to an external magnetic field. A focused photoexcitation adresses the symmetries of the local Nernst conductivity, which unveils a hitherto hidden, anomalous photo‐Nernst effect of three‐dimensional (3D) massive Dirac fermions. The experimental temperature and density dependencies are compared with a semiclassical Boltzmann transport model. For HfTe 5 thin films with the Fermi level close to the gap, the model suggests that the anomalous photo‐Nernst currents originate from an intrinsic Berry curvature mechanism, where the Zeeman interaction effectively breaks time‐reversal symmetry of the massive Dirac fermions already at moderate external magnetic fields.
Author Kiemle, Jonas
Meng, Tobias
Dong, Qingxin
Xu, Chen
Singh, Maanwinder P.
Chen, Genfu
Schmunk, Waldemar
Kastl, Christoph
Author_xml – sequence: 1
  givenname: Maanwinder P.
  surname: Singh
  fullname: Singh, Maanwinder P.
  organization: Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany, Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany
– sequence: 2
  givenname: Jonas
  surname: Kiemle
  fullname: Kiemle, Jonas
  organization: Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany, Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany
– sequence: 3
  givenname: Chen
  surname: Xu
  fullname: Xu, Chen
  organization: Institute of Theoretical Physics and Würzburg‐Dresden Cluster of Excellence ct.qmat Technische Universität Dresden 01062 Dresden Germany, Department of Physics and Materials Science University of Luxembourg Luxembourg L‐1511 Luxembourg
– sequence: 4
  givenname: Waldemar
  surname: Schmunk
  fullname: Schmunk, Waldemar
  organization: Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany, Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany
– sequence: 5
  givenname: Qingxin
  surname: Dong
  fullname: Dong, Qingxin
  organization: Institute of Physics and Beijing National Laboratory for Condensed Matter Physics Chinese Academy of Sciences Beijing 100190 China, School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
– sequence: 6
  givenname: Genfu
  surname: Chen
  fullname: Chen, Genfu
  organization: Institute of Physics and Beijing National Laboratory for Condensed Matter Physics Chinese Academy of Sciences Beijing 100190 China, School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China, Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
– sequence: 7
  givenname: Tobias
  orcidid: 0000-0001-5164-1287
  surname: Meng
  fullname: Meng, Tobias
  organization: Institute of Theoretical Physics and Würzburg‐Dresden Cluster of Excellence ct.qmat Technische Universität Dresden 01062 Dresden Germany
– sequence: 8
  givenname: Christoph
  orcidid: 0000-0001-5309-618X
  surname: Kastl
  fullname: Kastl, Christoph
  organization: Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany, Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany
BookMark eNqVjkFKA0EQRQuJYIzZuq4LZKzuSdBZiibGheJi9k0zVJOWme5Q1YruPIJn9CQmICKCC1f_L_7jv2MYpZwY4NRQZYjsmd--SGXJ1kTUNAcwtucLMzOWaPSjH8FU9XE3sReNqedmDDfthvEy5cH3-UnxYZNL_nh7v2dJWnAZAncFc8A7rxqfGa-j-A5XLEPMSfE24Tq0jIsTOAy-V55-5QSq1bK9Ws86yarCwW0lDl5enSG3N3Z7Y_dtXE9g_gvoYvFl91LEx_5v7J8_n5NcW80
CitedBy_id crossref_primary_10_1021_acsnano_4c02081
Cites_doi 10.1038/s41467-019-13391-z
10.1088/2053-1583/ab8d82
10.1088/1367-2630/17/2/023007
10.1103/PhysRevLett.115.176404
10.1038/ncomms12516
10.1038/srep35357
10.1038/s43246-022-00316-5
10.1038/srep35654
10.1002/andp.18862651010
10.1021/acs.nanolett.1c00958
10.1103/PhysRevB.107.L041202
10.1038/srep45667
10.1088/2053-1583/ac3e03
10.1103/RevModPhys.82.1959
10.1002/pssb.202000033
10.1038/nphys3549
10.1016/0038-1098(82)90004-7
10.1038/s41467-020-19773-y
10.1038/s41567-022-01898-0
10.1103/PhysRevB.100.115201
10.1063/1.5127804
10.1103/PhysRevLett.108.106602
10.1103/PhysRevB.90.075415
10.1038/ncomms7617
10.1038/ncomms15512
10.1088/0256-307X/34/3/037102
10.1038/s41535-020-0239-z
10.1016/j.scib.2017.05.030
10.21468/SciPostPhys.14.4.066
10.1088/1367-2630/ac8e24
10.1103/PhysRevB.89.195137
10.1103/PhysRevLett.125.046403
10.1038/s41567-018-0078-z
10.1021/acs.nanolett.3c01528
10.1038/s41467-020-20564-8
10.1103/PhysRevB.99.125141
10.1103/PhysRevB.93.035116
10.1038/s41586-019-1180-9
10.1088/1367-2630/aa55a3
10.1103/RevModPhys.82.1539
10.1103/PhysRevB.53.7010
10.1103/PhysRevB.96.195119
10.1063/1.5116788
10.1103/PhysRevB.59.14915
10.1038/s41467-022-35106-7
10.1103/PhysRevB.106.174510
10.1038/s41467-021-23435-y
10.1103/PhysRevB.99.155404
10.1103/PhysRevLett.117.237601
10.1103/PhysRevLett.123.196602
10.1103/PhysRevB.103.L201110
10.1103/PhysRevB.103.045203
10.1080/14786448008626828
10.1103/PhysRevB.95.195119
10.1103/PhysRevB.90.165115
10.1126/sciadv.aav9771
10.1038/nmat4964
10.1038/s41535-022-00478-y
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/apxr.202300099
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
ExternalDocumentID 10_1002_apxr_202300099
GroupedDBID 0R~
24P
88I
AAFWJ
AAYXX
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
M~E
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
ID FETCH-crossref_primary_10_1002_apxr_2023000993
ISSN 2751-1200
IngestDate Tue Jul 01 02:33:00 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1002_apxr_2023000993
ORCID 0000-0001-5164-1287
0000-0001-5309-618X
ParticipantIDs crossref_citationtrail_10_1002_apxr_202300099
crossref_primary_10_1002_apxr_202300099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-00
PublicationDecade 2020
PublicationTitle Advanced Physics Research
PublicationYear 2024
References e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
Weng H. (e_1_2_10_12_1) 2014; 4
e_1_2_10_42_1
Zhou B. B. (e_1_2_10_40_1) 2020; 10
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_1_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – ident: e_1_2_10_5_1
  doi: 10.1038/s41467-019-13391-z
– ident: e_1_2_10_44_1
  doi: 10.1088/2053-1583/ab8d82
– ident: e_1_2_10_36_1
  doi: 10.1088/1367-2630/17/2/023007
– volume: 4
  year: 2014
  ident: e_1_2_10_12_1
  publication-title: Phys. Rev. X
– ident: e_1_2_10_53_1
  doi: 10.1103/PhysRevLett.115.176404
– ident: e_1_2_10_49_1
  doi: 10.1038/ncomms12516
– ident: e_1_2_10_33_1
  doi: 10.1038/srep35357
– ident: e_1_2_10_20_1
  doi: 10.1038/s43246-022-00316-5
– ident: e_1_2_10_38_1
  doi: 10.1038/srep35654
– ident: e_1_2_10_3_1
  doi: 10.1002/andp.18862651010
– ident: e_1_2_10_18_1
  doi: 10.1021/acs.nanolett.1c00958
– ident: e_1_2_10_23_1
  doi: 10.1103/PhysRevB.107.L041202
– ident: e_1_2_10_35_1
  doi: 10.1038/srep45667
– ident: e_1_2_10_46_1
  doi: 10.1088/2053-1583/ac3e03
– ident: e_1_2_10_10_1
  doi: 10.1103/RevModPhys.82.1959
– ident: e_1_2_10_42_1
  doi: 10.1002/pssb.202000033
– ident: e_1_2_10_39_1
  doi: 10.1038/nphys3549
– ident: e_1_2_10_48_1
  doi: 10.1016/0038-1098(82)90004-7
– ident: e_1_2_10_24_1
  doi: 10.1038/s41467-020-19773-y
– ident: e_1_2_10_43_1
  doi: 10.1038/s41567-022-01898-0
– ident: e_1_2_10_31_1
  doi: 10.1103/PhysRevB.100.115201
– ident: e_1_2_10_32_1
  doi: 10.1063/1.5127804
– ident: e_1_2_10_4_1
  doi: 10.1103/PhysRevLett.108.106602
– ident: e_1_2_10_41_1
  doi: 10.1103/PhysRevB.90.075415
– ident: e_1_2_10_45_1
  doi: 10.1038/ncomms7617
– ident: e_1_2_10_22_1
  doi: 10.1038/ncomms15512
– ident: e_1_2_10_63_1
  doi: 10.1088/0256-307X/34/3/037102
– ident: e_1_2_10_61_1
– ident: e_1_2_10_27_1
  doi: 10.1038/s41535-020-0239-z
– ident: e_1_2_10_51_1
  doi: 10.1016/j.scib.2017.05.030
– ident: e_1_2_10_19_1
  doi: 10.21468/SciPostPhys.14.4.066
– ident: e_1_2_10_50_1
  doi: 10.1088/1367-2630/ac8e24
– ident: e_1_2_10_55_1
  doi: 10.1103/PhysRevB.89.195137
– ident: e_1_2_10_13_1
  doi: 10.1103/PhysRevLett.125.046403
– ident: e_1_2_10_29_1
  doi: 10.1038/s41567-018-0078-z
– ident: e_1_2_10_59_1
  doi: 10.1021/acs.nanolett.3c01528
– ident: e_1_2_10_15_1
  doi: 10.1038/s41467-020-20564-8
– ident: e_1_2_10_37_1
  doi: 10.1103/PhysRevB.99.125141
– ident: e_1_2_10_57_1
  doi: 10.1103/PhysRevB.93.035116
– ident: e_1_2_10_34_1
  doi: 10.1038/s41586-019-1180-9
– ident: e_1_2_10_58_1
  doi: 10.1088/1367-2630/aa55a3
– ident: e_1_2_10_2_1
  doi: 10.1103/RevModPhys.82.1539
– ident: e_1_2_10_6_1
  doi: 10.1103/PhysRevB.53.7010
– ident: e_1_2_10_11_1
  doi: 10.1103/PhysRevB.96.195119
– ident: e_1_2_10_47_1
  doi: 10.1063/1.5116788
– ident: e_1_2_10_7_1
  doi: 10.1103/PhysRevB.59.14915
– ident: e_1_2_10_52_1
  doi: 10.1038/s41467-022-35106-7
– ident: e_1_2_10_54_1
  doi: 10.1103/PhysRevB.106.174510
– ident: e_1_2_10_21_1
  doi: 10.1038/s41467-021-23435-y
– ident: e_1_2_10_9_1
  doi: 10.1103/PhysRevB.99.155404
– ident: e_1_2_10_14_1
  doi: 10.1103/PhysRevLett.117.237601
– ident: e_1_2_10_26_1
  doi: 10.1103/PhysRevLett.123.196602
– ident: e_1_2_10_28_1
  doi: 10.1103/PhysRevB.103.L201110
– ident: e_1_2_10_30_1
  doi: 10.1103/PhysRevB.103.045203
– ident: e_1_2_10_62_1
– volume: 10
  year: 2020
  ident: e_1_2_10_40_1
  publication-title: Phys. Rev. X
– ident: e_1_2_10_1_1
  doi: 10.1080/14786448008626828
– ident: e_1_2_10_16_1
  doi: 10.1103/PhysRevB.95.195119
– ident: e_1_2_10_56_1
  doi: 10.1103/PhysRevB.90.165115
– ident: e_1_2_10_60_1
  doi: 10.1126/sciadv.aav9771
– ident: e_1_2_10_17_1
  doi: 10.1038/srep45667
– ident: e_1_2_10_8_1
  doi: 10.1038/nmat4964
– ident: e_1_2_10_25_1
  doi: 10.1038/s41535-022-00478-y
SSID ssj0002891341
Score 4.498041
Snippet The quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse...
SourceID crossref
SourceType Index Database
Enrichment Source
Title The Anomalous Photo‐Nernst Effect of Massive Dirac Fermions In HfTe 5
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0gbNwYjRqfZBYmLppiXwOyRAOCiYQoRnY4HYaw6INAG40rP8Fv9Eu802mn1WCCbppm0k5nck_ua869RejMJZMGazpT3XVcQ3foJQE9yJkujOnEtonToKIa-a5f7z46tyMyKpWeC6ylOHJr7G1lXcl_pApjIFdRJfsHyapJYQDuQb5wBQnDdW0ZQ_zuU08QWQezMAoVeaHPF-D5aWl34oToskyo6qDkKNM6ggQjaDK9QOtOh1wjRTe1lTEDEoIoWyqCnkrIgMWbyVofGryIlosLbVDLD_S576nkvPLaR7E84M-rzx7YzI-DRCE_UW_CfboopiEsJ-dhSW1lNYipm7LtKBiWFWOpurULqLJXKnHZFJbOX0W_VgiRhBebm6vsiP6HFVPcQtmH2RqL98fq_Q1UsSCQMMqoctXuD-5VHs4S57TJD07VarPenoZ18X0RBd-l4IQMt9FWGj3gloTCDirxYBfdAAywggFOYPD5_iEBgCUAcDjFKQBwAgCcAQD3AiwAgMkeqnXaw-uunn19PJetSMarN2vvo3IQBvwA4bptm9OmwZomBI7GhFDThR0zgxMw0mDsDlE-KUu7woufk3i_TH2IztdcxNHaTx6jzRxRJ6gcLWJ-Cq5e5FZTaVWTVMkXtN5Vwg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Anomalous+Photo%E2%80%90Nernst+Effect+of+Massive+Dirac+Fermions+In+HfTe+5&rft.jtitle=Advanced+Physics+Research&rft.au=Singh%2C+Maanwinder+P.&rft.au=Kiemle%2C+Jonas&rft.au=Xu%2C+Chen&rft.au=Schmunk%2C+Waldemar&rft.date=2024-03-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1002%2Fapxr.202300099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_apxr_202300099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon