The Anomalous Photo‐Nernst Effect of Massive Dirac Fermions In HfTe 5
The quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse (thermo)electric conductivity. However, time‐reversal symmetry typically constrains the direct observation and exploitation of anomalous transport to mag...
Saved in:
Published in | Advanced Physics Research Vol. 3; no. 3 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.03.2024
|
Online Access | Get full text |
ISSN | 2751-1200 2751-1200 |
DOI | 10.1002/apxr.202300099 |
Cover
Loading…
Abstract | The quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse (thermo)electric conductivity. However, time‐reversal symmetry typically constrains the direct observation and exploitation of anomalous transport to magnetic compounds. Here, it is demonstrated the anomalous Hall and Nernst conductivities are essential for describing the optoelectronic transport in thin films of the non‐magnetic, weakly gapped semimetal HfTe
5
subject to an external magnetic field. A focused photoexcitation adresses the symmetries of the local Nernst conductivity, which unveils a hitherto hidden, anomalous photo‐Nernst effect of three‐dimensional (3D) massive Dirac fermions. The experimental temperature and density dependencies are compared with a semiclassical Boltzmann transport model. For HfTe
5
thin films with the Fermi level close to the gap, the model suggests that the anomalous photo‐Nernst currents originate from an intrinsic Berry curvature mechanism, where the Zeeman interaction effectively breaks time‐reversal symmetry of the massive Dirac fermions already at moderate external magnetic fields. |
---|---|
AbstractList | The quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse (thermo)electric conductivity. However, time‐reversal symmetry typically constrains the direct observation and exploitation of anomalous transport to magnetic compounds. Here, it is demonstrated the anomalous Hall and Nernst conductivities are essential for describing the optoelectronic transport in thin films of the non‐magnetic, weakly gapped semimetal HfTe
5
subject to an external magnetic field. A focused photoexcitation adresses the symmetries of the local Nernst conductivity, which unveils a hitherto hidden, anomalous photo‐Nernst effect of three‐dimensional (3D) massive Dirac fermions. The experimental temperature and density dependencies are compared with a semiclassical Boltzmann transport model. For HfTe
5
thin films with the Fermi level close to the gap, the model suggests that the anomalous photo‐Nernst currents originate from an intrinsic Berry curvature mechanism, where the Zeeman interaction effectively breaks time‐reversal symmetry of the massive Dirac fermions already at moderate external magnetic fields. |
Author | Kiemle, Jonas Meng, Tobias Dong, Qingxin Xu, Chen Singh, Maanwinder P. Chen, Genfu Schmunk, Waldemar Kastl, Christoph |
Author_xml | – sequence: 1 givenname: Maanwinder P. surname: Singh fullname: Singh, Maanwinder P. organization: Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany, Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany – sequence: 2 givenname: Jonas surname: Kiemle fullname: Kiemle, Jonas organization: Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany, Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany – sequence: 3 givenname: Chen surname: Xu fullname: Xu, Chen organization: Institute of Theoretical Physics and Würzburg‐Dresden Cluster of Excellence ct.qmat Technische Universität Dresden 01062 Dresden Germany, Department of Physics and Materials Science University of Luxembourg Luxembourg L‐1511 Luxembourg – sequence: 4 givenname: Waldemar surname: Schmunk fullname: Schmunk, Waldemar organization: Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany, Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany – sequence: 5 givenname: Qingxin surname: Dong fullname: Dong, Qingxin organization: Institute of Physics and Beijing National Laboratory for Condensed Matter Physics Chinese Academy of Sciences Beijing 100190 China, School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China – sequence: 6 givenname: Genfu surname: Chen fullname: Chen, Genfu organization: Institute of Physics and Beijing National Laboratory for Condensed Matter Physics Chinese Academy of Sciences Beijing 100190 China, School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China, Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China – sequence: 7 givenname: Tobias orcidid: 0000-0001-5164-1287 surname: Meng fullname: Meng, Tobias organization: Institute of Theoretical Physics and Würzburg‐Dresden Cluster of Excellence ct.qmat Technische Universität Dresden 01062 Dresden Germany – sequence: 8 givenname: Christoph orcidid: 0000-0001-5309-618X surname: Kastl fullname: Kastl, Christoph organization: Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany, Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany |
BookMark | eNqVjkFKA0EQRQuJYIzZuq4LZKzuSdBZiibGheJi9k0zVJOWme5Q1YruPIJn9CQmICKCC1f_L_7jv2MYpZwY4NRQZYjsmd--SGXJ1kTUNAcwtucLMzOWaPSjH8FU9XE3sReNqedmDDfthvEy5cH3-UnxYZNL_nh7v2dJWnAZAncFc8A7rxqfGa-j-A5XLEPMSfE24Tq0jIsTOAy-V55-5QSq1bK9Ws86yarCwW0lDl5enSG3N3Z7Y_dtXE9g_gvoYvFl91LEx_5v7J8_n5NcW80 |
CitedBy_id | crossref_primary_10_1021_acsnano_4c02081 |
Cites_doi | 10.1038/s41467-019-13391-z 10.1088/2053-1583/ab8d82 10.1088/1367-2630/17/2/023007 10.1103/PhysRevLett.115.176404 10.1038/ncomms12516 10.1038/srep35357 10.1038/s43246-022-00316-5 10.1038/srep35654 10.1002/andp.18862651010 10.1021/acs.nanolett.1c00958 10.1103/PhysRevB.107.L041202 10.1038/srep45667 10.1088/2053-1583/ac3e03 10.1103/RevModPhys.82.1959 10.1002/pssb.202000033 10.1038/nphys3549 10.1016/0038-1098(82)90004-7 10.1038/s41467-020-19773-y 10.1038/s41567-022-01898-0 10.1103/PhysRevB.100.115201 10.1063/1.5127804 10.1103/PhysRevLett.108.106602 10.1103/PhysRevB.90.075415 10.1038/ncomms7617 10.1038/ncomms15512 10.1088/0256-307X/34/3/037102 10.1038/s41535-020-0239-z 10.1016/j.scib.2017.05.030 10.21468/SciPostPhys.14.4.066 10.1088/1367-2630/ac8e24 10.1103/PhysRevB.89.195137 10.1103/PhysRevLett.125.046403 10.1038/s41567-018-0078-z 10.1021/acs.nanolett.3c01528 10.1038/s41467-020-20564-8 10.1103/PhysRevB.99.125141 10.1103/PhysRevB.93.035116 10.1038/s41586-019-1180-9 10.1088/1367-2630/aa55a3 10.1103/RevModPhys.82.1539 10.1103/PhysRevB.53.7010 10.1103/PhysRevB.96.195119 10.1063/1.5116788 10.1103/PhysRevB.59.14915 10.1038/s41467-022-35106-7 10.1103/PhysRevB.106.174510 10.1038/s41467-021-23435-y 10.1103/PhysRevB.99.155404 10.1103/PhysRevLett.117.237601 10.1103/PhysRevLett.123.196602 10.1103/PhysRevB.103.L201110 10.1103/PhysRevB.103.045203 10.1080/14786448008626828 10.1103/PhysRevB.95.195119 10.1103/PhysRevB.90.165115 10.1126/sciadv.aav9771 10.1038/nmat4964 10.1038/s41535-022-00478-y |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/apxr.202300099 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
ExternalDocumentID | 10_1002_apxr_202300099 |
GroupedDBID | 0R~ 24P 88I AAFWJ AAYXX ABJCF ABUWG ACCMX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P M~E PCBAR PDBOC PHGZM PHGZT PIMPY |
ID | FETCH-crossref_primary_10_1002_apxr_2023000993 |
ISSN | 2751-1200 |
IngestDate | Tue Jul 01 02:33:00 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1002_apxr_2023000993 |
ORCID | 0000-0001-5164-1287 0000-0001-5309-618X |
ParticipantIDs | crossref_citationtrail_10_1002_apxr_202300099 crossref_primary_10_1002_apxr_202300099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-00 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2024 |
References | e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 Weng H. (e_1_2_10_12_1) 2014; 4 e_1_2_10_42_1 Zhou B. B. (e_1_2_10_40_1) 2020; 10 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_1_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – ident: e_1_2_10_5_1 doi: 10.1038/s41467-019-13391-z – ident: e_1_2_10_44_1 doi: 10.1088/2053-1583/ab8d82 – ident: e_1_2_10_36_1 doi: 10.1088/1367-2630/17/2/023007 – volume: 4 year: 2014 ident: e_1_2_10_12_1 publication-title: Phys. Rev. X – ident: e_1_2_10_53_1 doi: 10.1103/PhysRevLett.115.176404 – ident: e_1_2_10_49_1 doi: 10.1038/ncomms12516 – ident: e_1_2_10_33_1 doi: 10.1038/srep35357 – ident: e_1_2_10_20_1 doi: 10.1038/s43246-022-00316-5 – ident: e_1_2_10_38_1 doi: 10.1038/srep35654 – ident: e_1_2_10_3_1 doi: 10.1002/andp.18862651010 – ident: e_1_2_10_18_1 doi: 10.1021/acs.nanolett.1c00958 – ident: e_1_2_10_23_1 doi: 10.1103/PhysRevB.107.L041202 – ident: e_1_2_10_35_1 doi: 10.1038/srep45667 – ident: e_1_2_10_46_1 doi: 10.1088/2053-1583/ac3e03 – ident: e_1_2_10_10_1 doi: 10.1103/RevModPhys.82.1959 – ident: e_1_2_10_42_1 doi: 10.1002/pssb.202000033 – ident: e_1_2_10_39_1 doi: 10.1038/nphys3549 – ident: e_1_2_10_48_1 doi: 10.1016/0038-1098(82)90004-7 – ident: e_1_2_10_24_1 doi: 10.1038/s41467-020-19773-y – ident: e_1_2_10_43_1 doi: 10.1038/s41567-022-01898-0 – ident: e_1_2_10_31_1 doi: 10.1103/PhysRevB.100.115201 – ident: e_1_2_10_32_1 doi: 10.1063/1.5127804 – ident: e_1_2_10_4_1 doi: 10.1103/PhysRevLett.108.106602 – ident: e_1_2_10_41_1 doi: 10.1103/PhysRevB.90.075415 – ident: e_1_2_10_45_1 doi: 10.1038/ncomms7617 – ident: e_1_2_10_22_1 doi: 10.1038/ncomms15512 – ident: e_1_2_10_63_1 doi: 10.1088/0256-307X/34/3/037102 – ident: e_1_2_10_61_1 – ident: e_1_2_10_27_1 doi: 10.1038/s41535-020-0239-z – ident: e_1_2_10_51_1 doi: 10.1016/j.scib.2017.05.030 – ident: e_1_2_10_19_1 doi: 10.21468/SciPostPhys.14.4.066 – ident: e_1_2_10_50_1 doi: 10.1088/1367-2630/ac8e24 – ident: e_1_2_10_55_1 doi: 10.1103/PhysRevB.89.195137 – ident: e_1_2_10_13_1 doi: 10.1103/PhysRevLett.125.046403 – ident: e_1_2_10_29_1 doi: 10.1038/s41567-018-0078-z – ident: e_1_2_10_59_1 doi: 10.1021/acs.nanolett.3c01528 – ident: e_1_2_10_15_1 doi: 10.1038/s41467-020-20564-8 – ident: e_1_2_10_37_1 doi: 10.1103/PhysRevB.99.125141 – ident: e_1_2_10_57_1 doi: 10.1103/PhysRevB.93.035116 – ident: e_1_2_10_34_1 doi: 10.1038/s41586-019-1180-9 – ident: e_1_2_10_58_1 doi: 10.1088/1367-2630/aa55a3 – ident: e_1_2_10_2_1 doi: 10.1103/RevModPhys.82.1539 – ident: e_1_2_10_6_1 doi: 10.1103/PhysRevB.53.7010 – ident: e_1_2_10_11_1 doi: 10.1103/PhysRevB.96.195119 – ident: e_1_2_10_47_1 doi: 10.1063/1.5116788 – ident: e_1_2_10_7_1 doi: 10.1103/PhysRevB.59.14915 – ident: e_1_2_10_52_1 doi: 10.1038/s41467-022-35106-7 – ident: e_1_2_10_54_1 doi: 10.1103/PhysRevB.106.174510 – ident: e_1_2_10_21_1 doi: 10.1038/s41467-021-23435-y – ident: e_1_2_10_9_1 doi: 10.1103/PhysRevB.99.155404 – ident: e_1_2_10_14_1 doi: 10.1103/PhysRevLett.117.237601 – ident: e_1_2_10_26_1 doi: 10.1103/PhysRevLett.123.196602 – ident: e_1_2_10_28_1 doi: 10.1103/PhysRevB.103.L201110 – ident: e_1_2_10_30_1 doi: 10.1103/PhysRevB.103.045203 – ident: e_1_2_10_62_1 – volume: 10 year: 2020 ident: e_1_2_10_40_1 publication-title: Phys. Rev. X – ident: e_1_2_10_1_1 doi: 10.1080/14786448008626828 – ident: e_1_2_10_16_1 doi: 10.1103/PhysRevB.95.195119 – ident: e_1_2_10_56_1 doi: 10.1103/PhysRevB.90.165115 – ident: e_1_2_10_60_1 doi: 10.1126/sciadv.aav9771 – ident: e_1_2_10_17_1 doi: 10.1038/srep45667 – ident: e_1_2_10_8_1 doi: 10.1038/nmat4964 – ident: e_1_2_10_25_1 doi: 10.1038/s41535-022-00478-y |
SSID | ssj0002891341 |
Score | 4.498041 |
Snippet | The quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse... |
SourceID | crossref |
SourceType | Index Database Enrichment Source |
Title | The Anomalous Photo‐Nernst Effect of Massive Dirac Fermions In HfTe 5 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0gbNwYjRqfZBYmLppiXwOyRAOCiYQoRnY4HYaw6INAG40rP8Fv9Eu802mn1WCCbppm0k5nck_ua869RejMJZMGazpT3XVcQ3foJQE9yJkujOnEtonToKIa-a5f7z46tyMyKpWeC6ylOHJr7G1lXcl_pApjIFdRJfsHyapJYQDuQb5wBQnDdW0ZQ_zuU08QWQezMAoVeaHPF-D5aWl34oToskyo6qDkKNM6ggQjaDK9QOtOh1wjRTe1lTEDEoIoWyqCnkrIgMWbyVofGryIlosLbVDLD_S576nkvPLaR7E84M-rzx7YzI-DRCE_UW_CfboopiEsJ-dhSW1lNYipm7LtKBiWFWOpurULqLJXKnHZFJbOX0W_VgiRhBebm6vsiP6HFVPcQtmH2RqL98fq_Q1UsSCQMMqoctXuD-5VHs4S57TJD07VarPenoZ18X0RBd-l4IQMt9FWGj3gloTCDirxYBfdAAywggFOYPD5_iEBgCUAcDjFKQBwAgCcAQD3AiwAgMkeqnXaw-uunn19PJetSMarN2vvo3IQBvwA4bptm9OmwZomBI7GhFDThR0zgxMw0mDsDlE-KUu7woufk3i_TH2IztdcxNHaTx6jzRxRJ6gcLWJ-Cq5e5FZTaVWTVMkXtN5Vwg |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Anomalous+Photo%E2%80%90Nernst+Effect+of+Massive+Dirac+Fermions+In+HfTe+5&rft.jtitle=Advanced+Physics+Research&rft.au=Singh%2C+Maanwinder+P.&rft.au=Kiemle%2C+Jonas&rft.au=Xu%2C+Chen&rft.au=Schmunk%2C+Waldemar&rft.date=2024-03-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1002%2Fapxr.202300099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_apxr_202300099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |