Organic Surface Passivation on Rh@CeO 2 Cocatalysts for Photocatalytic Overall Water Splitting

Decorating Rh cocatalysts with Cr 2 O 3 overlayers can enhance the performance of photocatalytic overall water splitting (POWS). However, there is a general concern on the dissolution of Cr 2 O 3 , calling for the development of environment‐friendly metal oxides. Here, we employ phenylphosphonic aci...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie
Main Authors Xu, Teng, Shi, Jinfeng, Peng, Kang‐Shun, Hsu, Yung‐Hsi, Liu, Yu‐Chun, Wang, Sibo, Zhang, Hansong, Wang, Yongjie, Zhang, Guigang, Hung, Sung‐Fu, Liu, Kunlong, Wang, Xinchen
Format Journal Article
LanguageEnglish
Published 12.08.2025
Online AccessGet full text
ISSN0044-8249
1521-3757
DOI10.1002/ange.202513029

Cover

Loading…
Abstract Decorating Rh cocatalysts with Cr 2 O 3 overlayers can enhance the performance of photocatalytic overall water splitting (POWS). However, there is a general concern on the dissolution of Cr 2 O 3 , calling for the development of environment‐friendly metal oxides. Here, we employ phenylphosphonic acid (PPOA) as a model surface modifier to decorate the model Rh@CeO 2 cocatalysts and demonstrate the critical role of organic surface passivation in H 2 evolution catalysis. We identify a “surface passivation effect” in photocatalysis, wherein the PPOA modification on CeO 2 overlayers not only suppress the adsorption and activation of oxygen but exhibit strong resistance to hydrogen reduction during POWS. This dual functionality effectively suppresses the reverse reactions by blocking the redox cycle of exposed Rh sites and defective CeO 2 overlayers, resulting in significantly enhanced photocatalytic activity and stability. Importantly, this strategy is not limited to Rh@CeO 2 ‐PPOA systems; it also improves POWS performance in systems where other reducible oxides‐organophosphonic acids structure are used as passivation layers on other noble metal cocatalysts. These findings provide fundamental insights into the universal principles of surface passivation in photocatalysis and offer a practical framework for regulating the reverse reactions and provide guidance for optimizing POWS through targeted surface organic modification.
AbstractList Decorating Rh cocatalysts with Cr 2 O 3 overlayers can enhance the performance of photocatalytic overall water splitting (POWS). However, there is a general concern on the dissolution of Cr 2 O 3 , calling for the development of environment‐friendly metal oxides. Here, we employ phenylphosphonic acid (PPOA) as a model surface modifier to decorate the model Rh@CeO 2 cocatalysts and demonstrate the critical role of organic surface passivation in H 2 evolution catalysis. We identify a “surface passivation effect” in photocatalysis, wherein the PPOA modification on CeO 2 overlayers not only suppress the adsorption and activation of oxygen but exhibit strong resistance to hydrogen reduction during POWS. This dual functionality effectively suppresses the reverse reactions by blocking the redox cycle of exposed Rh sites and defective CeO 2 overlayers, resulting in significantly enhanced photocatalytic activity and stability. Importantly, this strategy is not limited to Rh@CeO 2 ‐PPOA systems; it also improves POWS performance in systems where other reducible oxides‐organophosphonic acids structure are used as passivation layers on other noble metal cocatalysts. These findings provide fundamental insights into the universal principles of surface passivation in photocatalysis and offer a practical framework for regulating the reverse reactions and provide guidance for optimizing POWS through targeted surface organic modification.
Author Peng, Kang‐Shun
Hsu, Yung‐Hsi
Liu, Yu‐Chun
Wang, Yongjie
Zhang, Guigang
Wang, Xinchen
Xu, Teng
Liu, Kunlong
Wang, Sibo
Zhang, Hansong
Shi, Jinfeng
Hung, Sung‐Fu
Author_xml – sequence: 1
  givenname: Teng
  surname: Xu
  fullname: Xu, Teng
  organization: State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry Fuzhou University Fuzhou 350116 China, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry Fuzhou University Fuzhou 350116 China
– sequence: 2
  givenname: Jinfeng
  surname: Shi
  fullname: Shi, Jinfeng
  organization: State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry Fuzhou University Fuzhou 350116 China, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry Fuzhou University Fuzhou 350116 China
– sequence: 3
  givenname: Kang‐Shun
  surname: Peng
  fullname: Peng, Kang‐Shun
  organization: Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
– sequence: 4
  givenname: Yung‐Hsi
  surname: Hsu
  fullname: Hsu, Yung‐Hsi
  organization: Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
– sequence: 5
  givenname: Yu‐Chun
  surname: Liu
  fullname: Liu, Yu‐Chun
  organization: Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
– sequence: 6
  givenname: Sibo
  surname: Wang
  fullname: Wang, Sibo
  organization: State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry Fuzhou University Fuzhou 350116 China, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry Fuzhou University Fuzhou 350116 China
– sequence: 7
  givenname: Hansong
  surname: Zhang
  fullname: Zhang, Hansong
  organization: Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Integrated Circuits Harbin Institute of Technology Shenzhen 518051 China
– sequence: 8
  givenname: Yongjie
  surname: Wang
  fullname: Wang, Yongjie
  organization: Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Integrated Circuits Harbin Institute of Technology Shenzhen 518051 China
– sequence: 9
  givenname: Guigang
  surname: Zhang
  fullname: Zhang, Guigang
  organization: State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry Fuzhou University Fuzhou 350116 China, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry Fuzhou University Fuzhou 350116 China
– sequence: 10
  givenname: Sung‐Fu
  surname: Hung
  fullname: Hung, Sung‐Fu
  organization: Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300 Taiwan, Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
– sequence: 11
  givenname: Kunlong
  surname: Liu
  fullname: Liu, Kunlong
  organization: State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry Fuzhou University Fuzhou 350116 China, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry Fuzhou University Fuzhou 350116 China
– sequence: 12
  givenname: Xinchen
  orcidid: 0000-0002-2490-3568
  surname: Wang
  fullname: Wang, Xinchen
  organization: State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry Fuzhou University Fuzhou 350116 China, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry Fuzhou University Fuzhou 350116 China
BookMark eNqVj8FqwzAQBZeSQJwm15z1A3ZXsl3Xt4Jp6c2hKfQWsRjZUVGlsFID-fsmEHovPBh4MIdZwswHbwA2EguJqB7IT6ZQqGpZomrvIJO1knnZ1M0MMsSqyp9U1S5gGeMXIj6qps1g3_NE3g5i98MjDUZsKUZ7omSDF5e9H5470wslujBQIneOKYoxsNgeQrpd6aL3J8PknPikZFjsjs6mZP20gvlILpr1jfdQvL58dG_5wCFGNqM-sv0mPmuJ-lqhrxX6r6L8t_ALilhSTQ
Cites_doi 10.1016/0927-0256(96)00008-0
10.1002/adma.202407534
10.1002/anie.200602473
10.1002/adma.202406848
10.1002/anie.202304694
10.1021/ja801648h
10.1039/C5TA04843E
10.1021/acs.accounts.3c00011
10.1039/C3CS60425J
10.1039/C8SC05757E
10.1002/anie.202217191
10.1038/nmat2317
10.1021/acs.chemrev.3c00081
10.1016/j.chphma.2024.09.001
10.1021/acscatal.3c04721
10.1021/jacs.4c07351
10.1021/acs.accounts.1c00469
10.1007/s12274-023-6333-3
10.1038/s41929-022-00907-y
10.1021/acscatal.2c00237
10.1016/j.chphma.2023.03.003
10.1103/PhysRevB.49.14251
10.1021/ar300227e
10.1103/PhysRevB.48.13115
10.1515/pac-2019-1006
10.1038/s41467-020-15965-8
10.1021/jacs.5b04107
10.1021/jacs.7b07114
10.1039/B800489G
10.1038/s43586-023-00226-x
10.1126/science.aaf5251
10.1126/science.1252553
10.1038/s41586-020-2278-9
10.1021/jp402240d
10.1016/j.scib.2018.03.002
10.1038/nchem.623
10.1103/PhysRevB.54.11169
10.1021/acscatal.1c02443
10.1002/cnma.202400070
10.1002/anie.202208237
10.1039/C8TA05885G
10.1021/acscatal.7b01913
10.1021/acs.chemrev.9b00201
10.1038/s41929-020-0481-6
10.1038/s41586-020-2783-x
10.1016/j.apsusc.2024.159666
10.1126/science.1188267
10.1038/s41929-020-0476-3
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/ange.202513029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
ExternalDocumentID 10_1002_ange_202513029
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
ID FETCH-crossref_primary_10_1002_ange_2025130293
ISSN 0044-8249
IngestDate Thu Aug 14 00:01:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1002_ange_2025130293
ORCID 0000-0002-2490-3568
ParticipantIDs crossref_primary_10_1002_ange_202513029
PublicationCentury 2000
PublicationDate 2025-08-12
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-12
  day: 12
PublicationDecade 2020
PublicationTitle Angewandte Chemie
PublicationYear 2025
References Yoshida M. (e_1_2_8_18_1) 2013; 117
Kresse G. (e_1_2_8_46_1) 1994; 49
Asakura H. (e_1_2_8_37_1) 2018; 140
Qin R. (e_1_2_8_28_1) 2020; 3
Wang Q. (e_1_2_8_2_1) 2020; 120
Nishioka S. (e_1_2_8_3_1) 2023; 3
Gao H. (e_1_2_8_13_1) 2025; 4
Takata T. (e_1_2_8_8_1) 2024; 36
Kresse G. (e_1_2_8_45_1) 1993; 48
Hirayama D. (e_1_2_8_16_1) 2024; 146
Fu H. (e_1_2_8_10_1) 2024; 36
Wu D. (e_1_2_8_33_1) 2024; 17
Xiao J. (e_1_2_8_6_1) 2023; 56
Ruan P. (e_1_2_8_22_1) 2023; 4
Liu M. (e_1_2_8_12_1) 2023; 62
Huang W. (e_1_2_8_36_1) 2020; 11
Li Z. (e_1_2_8_14_1) 2023; 6
Liu Z.‐Q. (e_1_2_8_42_1) 2024; 14
Yang J. (e_1_2_8_5_1) 2013; 46
Kudo A. (e_1_2_8_1_1) 2009; 38
Zhou Q. (e_1_2_8_19_1) 2024; 656
Huang X. (e_1_2_8_20_1) 2021; 11
Takata T. (e_1_2_8_17_1) 2015; 137
Zhang Y. (e_1_2_8_41_1) 2023; 62
Wang X. (e_1_2_8_4_1) 2009; 8
Lin Z.‐Y. (e_1_2_8_39_1) 2024; 10
Chen G. (e_1_2_8_29_1) 2014; 344
Pei C. (e_1_2_8_32_1) 2024; 124
Liu P. (e_1_2_8_40_1) 2018; 63
Ran J. (e_1_2_8_7_1) 2014; 43
Liu P. (e_1_2_8_44_1) 2016; 352
Wang H.‐F. (e_1_2_8_49_1) 2008; 130
Kresse G. (e_1_2_8_47_1) 1996; 6
Maeda K. (e_1_2_8_11_1) 2006; 45
Lin L. (e_1_2_8_9_1) 2020; 3
Ham Y. (e_1_2_8_25_1) 2016; 4
Cui J. (e_1_2_8_30_1) 2025; 44
Guo C. (e_1_2_8_50_1) 2022; 12
Takata T. (e_1_2_8_15_1) 2020; 581
Strasser P. (e_1_2_8_34_1) 2010; 2
Hung S. F. (e_1_2_8_38_1) 2020; 92
Zhao Z. (e_1_2_8_26_1) 2018; 6
Peng J. (e_1_2_8_21_1) 2020; 586
Wang L. (e_1_2_8_24_1) 2024; 3
Hulsey M. J. (e_1_2_8_43_1) 2022; 61
Lyu H. (e_1_2_8_27_1) 2019; 10
Ruiz Puigdollers A. (e_1_2_8_31_1) 2017; 7
Fu Q. (e_1_2_8_35_1) 2010; 328
Kresse G. (e_1_2_8_48_1) 1996; 54
Jenkins A. H. (e_1_2_8_23_1) 2021; 54
References_xml – volume: 6
  start-page: 15
  year: 1996
  ident: e_1_2_8_47_1
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 36
  year: 2024
  ident: e_1_2_8_10_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202407534
– volume: 45
  start-page: 7806
  year: 2006
  ident: e_1_2_8_11_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200602473
– volume: 36
  year: 2024
  ident: e_1_2_8_8_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202406848
– volume: 62
  year: 2023
  ident: e_1_2_8_12_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202304694
– volume: 130
  start-page: 10996
  year: 2008
  ident: e_1_2_8_49_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801648h
– volume: 4
  start-page: 3027
  year: 2016
  ident: e_1_2_8_25_1
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA04843E
– volume: 44
  year: 2025
  ident: e_1_2_8_30_1
  publication-title: Chinese J. Struc. Chem.
– volume: 56
  start-page: 878
  year: 2023
  ident: e_1_2_8_6_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00011
– volume: 43
  start-page: 7787
  year: 2014
  ident: e_1_2_8_7_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60425J
– volume: 10
  start-page: 3196
  year: 2019
  ident: e_1_2_8_27_1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05757E
– volume: 62
  year: 2023
  ident: e_1_2_8_41_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202217191
– volume: 8
  start-page: 76
  year: 2009
  ident: e_1_2_8_4_1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 124
  start-page: 2955
  year: 2024
  ident: e_1_2_8_32_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00081
– volume: 4
  start-page: 137
  year: 2025
  ident: e_1_2_8_13_1
  publication-title: ChemPhysMater.
  doi: 10.1016/j.chphma.2024.09.001
– volume: 14
  start-page: 2115
  year: 2024
  ident: e_1_2_8_42_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c04721
– volume: 146
  start-page: 26808
  year: 2024
  ident: e_1_2_8_16_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c07351
– volume: 54
  start-page: 4080
  year: 2021
  ident: e_1_2_8_23_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00469
– volume: 17
  start-page: 397
  year: 2024
  ident: e_1_2_8_33_1
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-6333-3
– volume: 6
  start-page: 80
  year: 2023
  ident: e_1_2_8_14_1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00907-y
– volume: 12
  start-page: 6781
  year: 2022
  ident: e_1_2_8_50_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00237
– volume: 3
  start-page: 24
  year: 2024
  ident: e_1_2_8_24_1
  publication-title: ChemPhysMater.
  doi: 10.1016/j.chphma.2023.03.003
– volume: 49
  start-page: 14251
  year: 1994
  ident: e_1_2_8_46_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 46
  start-page: 1900
  year: 2013
  ident: e_1_2_8_5_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300227e
– volume: 48
  start-page: 13115
  year: 1993
  ident: e_1_2_8_45_1
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.48.13115
– volume: 92
  start-page: 733
  year: 2020
  ident: e_1_2_8_38_1
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2019-1006
– volume: 11
  start-page: 2312
  year: 2020
  ident: e_1_2_8_36_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15965-8
– volume: 137
  start-page: 9627
  year: 2015
  ident: e_1_2_8_17_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04107
– volume: 140
  start-page: 176
  year: 2018
  ident: e_1_2_8_37_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07114
– volume: 38
  start-page: 253
  year: 2009
  ident: e_1_2_8_1_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 3
  start-page: 42
  year: 2023
  ident: e_1_2_8_3_1
  publication-title: Nat. Rev. Methods Primers.
  doi: 10.1038/s43586-023-00226-x
– volume: 352
  start-page: 797
  year: 2016
  ident: e_1_2_8_44_1
  publication-title: Science.
  doi: 10.1126/science.aaf5251
– volume: 344
  start-page: 495
  year: 2014
  ident: e_1_2_8_29_1
  publication-title: Science.
  doi: 10.1126/science.1252553
– volume: 581
  start-page: 411
  year: 2020
  ident: e_1_2_8_15_1
  publication-title: Nature.
  doi: 10.1038/s41586-020-2278-9
– volume: 117
  start-page: 14000
  year: 2013
  ident: e_1_2_8_18_1
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp402240d
– volume: 63
  start-page: 675
  year: 2018
  ident: e_1_2_8_40_1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.03.002
– volume: 2
  start-page: 454
  year: 2010
  ident: e_1_2_8_34_1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.623
– volume: 54
  start-page: 11169
  year: 1996
  ident: e_1_2_8_48_1
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.54.11169
– volume: 11
  start-page: 9618
  year: 2021
  ident: e_1_2_8_20_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02443
– volume: 10
  year: 2024
  ident: e_1_2_8_39_1
  publication-title: ChemNanoMat.
  doi: 10.1002/cnma.202400070
– volume: 61
  year: 2022
  ident: e_1_2_8_43_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202208237
– volume: 4
  year: 2023
  ident: e_1_2_8_22_1
  publication-title: Innovation (Camb).
– volume: 6
  start-page: 16170
  year: 2018
  ident: e_1_2_8_26_1
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA05885G
– volume: 7
  start-page: 6493
  year: 2017
  ident: e_1_2_8_31_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01913
– volume: 120
  start-page: 919
  year: 2020
  ident: e_1_2_8_2_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00201
– volume: 3
  start-page: 703
  year: 2020
  ident: e_1_2_8_28_1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0481-6
– volume: 586
  start-page: 390
  year: 2020
  ident: e_1_2_8_21_1
  publication-title: Nature.
  doi: 10.1038/s41586-020-2783-x
– volume: 656
  year: 2024
  ident: e_1_2_8_19_1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2024.159666
– volume: 328
  start-page: 1141
  year: 2010
  ident: e_1_2_8_35_1
  publication-title: Science.
  doi: 10.1126/science.1188267
– volume: 3
  start-page: 649
  year: 2020
  ident: e_1_2_8_9_1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0476-3
SSID ssj0006279
Score 4.6005936
Snippet Decorating Rh cocatalysts with Cr 2 O 3 overlayers can enhance the performance of photocatalytic overall water splitting (POWS). However, there is a general...
SourceID crossref
SourceType Index Database
Title Organic Surface Passivation on Rh@CeO 2 Cocatalysts for Photocatalytic Overall Water Splitting
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN5oPejF-Izv7EHjgYCw3RJ6s6ka0oNt2hrrRQK4iImhpgWN_npnHzyqPVQTQsgWtoT5dmZ2duZbhE5tUHGW40S6D7ZVp4HV1B0W-TrY_igKIjCyT4Lt89Z272hn1BiVac2iuiQNjPBrbl3Jf6QKbSBXXiX7B8kWnUIDXIN84QwShvNCMpaFlCGM_knkwwDtgSesdivjiwD9-IyabdbVCAx7Eaf5nKaCf0HrxeNUNXHG1u47D029avc-50wcgGMq0qGrnmsreWYfPk_-1wTJQAGIUSZkztTtgu5RpAh0eKJX2dpjSq3wCHWeYjGIswKd7lT09JBVfnenL9W4BGnwQKtVDVWalOoOkYSkBlPqlVig0iQl9S_lLclgeU2FwTvkS6rN0kzlS_M_rFeRUyj5l4nHn_eK55fRCoEJBN_U46pfEovZRLIw5u-Y03ma5GL2_yvuSsXvGG6gdTVhwC0p_U20xJIttNrO9-nbRo8KBVihAFdQgOHox5eAAUxwBQMYMIBnMYAVBrDAAC4wsIOMm-th29XzF_TeJEGJN_9T1HdRLRknbA9hCrMAh5Ot2SGhgd0M6lFI_AZ8jScK49PcR-cLdnqw8J2HaK2EyRGqpZOMHYNDlwYnQjbfez1LPA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Surface+Passivation+on+Rh%40CeO+2+Cocatalysts+for+Photocatalytic+Overall+Water+Splitting&rft.jtitle=Angewandte+Chemie&rft.au=Xu%2C+Teng&rft.au=Shi%2C+Jinfeng&rft.au=Peng%2C+Kang%E2%80%90Shun&rft.au=Hsu%2C+Yung%E2%80%90Hsi&rft.date=2025-08-12&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002%2Fange.202513029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202513029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon