A new stochastic graph embedding method for Alzheimer’s disease early‐stage prediction and intervention evaluation
Background Subtle alterations of functional brain networks associated with Alzheimer’s disease (AD) are important for a quantitative characterization of neurodegeneration, however prior studies primarily focused on handcrafted, domain‐specific (ad‐hoc) graph features (). Here we developed a novel de...
Saved in:
Published in | Alzheimer's & dementia Vol. 16 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Subtle alterations of functional brain networks associated with Alzheimer’s disease (AD) are important for a quantitative characterization of neurodegeneration, however prior studies primarily focused on handcrafted, domain‐specific (ad‐hoc) graph features (). Here we developed a novel deep learning model that learns unsupervised brain network embeddings and automatically extracts AD‐related neural signatures. We assessed the robustness of the model in two downstream tasks, the prediction of conversion of mild cognitively impaired (MCI) patients to AD, and the evaluation of a multi‐domain cognitive intervention to amnestic MCI patients.
Method
We developed a graph Gaussian embedding method (MG2G) that uses a 3D encoder to learn intermediate representations through a sequence of hidden layers and outputs node‐wise low‐dimensional multivariate Gaussian distributions. Advantages of our model are that i) it discovers the intrinsic dimensionality of brain networks, ii) remaps brain data into a latent space amenable for supervised tasks such as AD classification, and iii) allows the use of the Wasserstein distance (W2) to define a metric space, and pinpoint subtle brain network alterations to specific brain regions.
Result
We used the MG2G model to embed MEG alpha band resting‐state network data from 48 stable MCI (S) patients, 28 progressive MCI (P) patients, and 53 age‐matched healthy elderly (N) subjects from the Madrid cohort. The obtained latent MEG brain network embeddings predicted AD progression as in Fig. 1. MG2G achieved higher performance than a completing model (node2vec) with 82% 3‐class classification, 93% 2‐class N/S classification, and 87% 2‐class S/P classification. We also computed functional brain networks from resting state fMRI data recorded from 12 aMCI patients before and after 12‐month of multi‐domain behavioral interventions. Using the W2 distance to quantify the probabilistic node‐wise embeddings in the latent space, we identified brain regions with intervention‐related functional alterations (Figs. 2 and 3).
Conclusion
MG2G provided a novel quantitative approach to assess complex functional connectivity patterns and learn highly‐informative network representations for different stages of AD while quantifying the uncertainty in the predicted outcomes. Acknowledgements: J‐Clinic for Machine Learning in Health at MIT; PSI2009‐14415C03‐01; PSI2012‐38375‐C03‐01; B2017/BMD‐3760; FJC2018‐037401‐I; Z161100000516001; D171100008217007. |
---|---|
AbstractList | Background
Subtle alterations of functional brain networks associated with Alzheimer’s disease (AD) are important for a quantitative characterization of neurodegeneration, however prior studies primarily focused on handcrafted, domain‐specific (ad‐hoc) graph features (). Here we developed a novel deep learning model that learns unsupervised brain network embeddings and automatically extracts AD‐related neural signatures. We assessed the robustness of the model in two downstream tasks, the prediction of conversion of mild cognitively impaired (MCI) patients to AD, and the evaluation of a multi‐domain cognitive intervention to amnestic MCI patients.
Method
We developed a graph Gaussian embedding method (MG2G) that uses a 3D encoder to learn intermediate representations through a sequence of hidden layers and outputs node‐wise low‐dimensional multivariate Gaussian distributions. Advantages of our model are that i) it discovers the intrinsic dimensionality of brain networks, ii) remaps brain data into a latent space amenable for supervised tasks such as AD classification, and iii) allows the use of the Wasserstein distance (W2) to define a metric space, and pinpoint subtle brain network alterations to specific brain regions.
Result
We used the MG2G model to embed MEG alpha band resting‐state network data from 48 stable MCI (S) patients, 28 progressive MCI (P) patients, and 53 age‐matched healthy elderly (N) subjects from the Madrid cohort. The obtained latent MEG brain network embeddings predicted AD progression as in Fig. 1. MG2G achieved higher performance than a completing model (node2vec) with 82% 3‐class classification, 93% 2‐class N/S classification, and 87% 2‐class S/P classification. We also computed functional brain networks from resting state fMRI data recorded from 12 aMCI patients before and after 12‐month of multi‐domain behavioral interventions. Using the W2 distance to quantify the probabilistic node‐wise embeddings in the latent space, we identified brain regions with intervention‐related functional alterations (Figs. 2 and 3).
Conclusion
MG2G provided a novel quantitative approach to assess complex functional connectivity patterns and learn highly‐informative network representations for different stages of AD while quantifying the uncertainty in the predicted outcomes. Acknowledgements: J‐Clinic for Machine Learning in Health at MIT; PSI2009‐14415C03‐01; PSI2012‐38375‐C03‐01; B2017/BMD‐3760; FJC2018‐037401‐I; Z161100000516001; D171100008217007. |
Author | Maestú, Fernando Zhang, Haifeng Garces, Pilar Wang, Zhijiang Li, Quanzheng Sanz, David Lopez Wang, Huali Pantazis, Dimitrios Xu, Mengjia |
Author_xml | – sequence: 1 givenname: Mengjia surname: Xu fullname: Xu, Mengjia email: mengjia_xu1@hotmail.com organization: Massachusetts Institute of Technology – sequence: 2 givenname: Zhijiang surname: Wang fullname: Wang, Zhijiang organization: Peking University Institute of Mental Health (Sixth Hospital) – sequence: 3 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng organization: Peking University Institute of Mental Health (Sixth Hospital) – sequence: 4 givenname: David Lopez surname: Sanz fullname: Sanz, David Lopez organization: Center for Biomedical Technology Polytechnic University – sequence: 5 givenname: Pilar surname: Garces fullname: Garces, Pilar organization: Complutense University of Madrid – sequence: 6 givenname: Fernando surname: Maestú fullname: Maestú, Fernando organization: Complutense University of Madrid – sequence: 7 givenname: Huali surname: Wang fullname: Wang, Huali organization: National Clinical Research Center for Mental Disorders – sequence: 8 givenname: Quanzheng surname: Li fullname: Li, Quanzheng organization: Massachusetts General Hospital – sequence: 9 givenname: Dimitrios surname: Pantazis fullname: Pantazis, Dimitrios organization: Massachusetts Institute of Technology |
BookMark | eNo9kL1uwjAURq2KSgXapU_gFwi1YxuTMUL9k5C6MHWJruMb4ipxkB1AMPEIXft6PElLqTp9R99whjMiA995JOSeswlnLH2A5jBhUos0uyJDrlSaqFRng3-eshsyivGDMclmXA3JNqcedzT2XVlD7F1JVwHWNcXWoLXOr2iLfd1ZWnWB5s2hRtdiOB2_IrUuIkSkCKHZn46fsYcV0nVA68redZ6Ct9T5HsMW_e-BW2g2cMZbcl1BE_Hub8dk-fS4nL8ki7fn13m-SDZ6liXGVkKytFIKOBrItDWSayOzzGqAUpcwFVbaqQJbplKUFri1RigtoDRCGjEm_KLduQb3xTq4FsK-4Kw41yp-ahWXWkW-eL-Q-AaKIGeM |
ContentType | Journal Article |
Copyright | 2020 the Alzheimer's Association |
Copyright_xml | – notice: 2020 the Alzheimer's Association |
DOI | 10.1002/alz.047329 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1552-5279 |
EndPage | n/a |
ExternalDocumentID | ALZ047329 |
Genre | abstract |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AACTN AAEDT AAHHS AAIKJ AAKOC AALRI AANLZ AAOAW AAXLA AAXUO AAYCA ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCFJ ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACXQS ADBBV ADBTR ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN ADZOD AEEZP AEIGN AEKER AENEX AEQDE AEUYR AEVXI AFKRA AFTJW AFWVQ AGHFR AGUBO AGWIK AGYEJ AITUG AIURR AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMFUW AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PIMPY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ T5K TEORI UKHRP ~G- |
ID | FETCH-LOGICAL-u789-bdf3402f55a1eba97db417b499d7aac7ca63d4d65adc243cda1ddb3573acb34b3 |
ISSN | 1552-5260 |
IngestDate | Wed Jan 22 16:31:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-u789-bdf3402f55a1eba97db417b499d7aac7ca63d4d65adc243cda1ddb3573acb34b3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.047329 |
PageCount | 1 |
ParticipantIDs | wiley_primary_10_1002_alz_047329_ALZ047329 |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Alzheimer's & dementia |
PublicationYear | 2020 |
SSID | ssj0040815 |
Score | 2.276405 |
Snippet | Background
Subtle alterations of functional brain networks associated with Alzheimer’s disease (AD) are important for a quantitative characterization of... |
SourceID | wiley |
SourceType | Publisher |
Title | A new stochastic graph embedding method for Alzheimer’s disease early‐stage prediction and intervention evaluation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.047329 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFtQLEs9oDJyyHeB929hhBqghVcCBA1Iu16103rkpa0aSHnPoTuPbv9Zd09pG1K0CiXCxrsrKVnc-zM7Oz3yD0pqaaSi4gLFFDnjJhilQQ48r-OCXw9RHp2D4_5dOv7OOcz3u9607V0nqlBtXmj-dK_kerIAO92lOy99BsfCgI4B70C1fQMFz_Scdj2xA8AfetWkjLt5w4-unE_FBGu8Mqvj-0KyUcn24WprG9UkJ5g7jY7s4kxrIcx7IH8BeP7fEpu4Wz2lYrN93ayJYivOvbtm-wewAWUtrlHpto-edrl381y-OTVvg9ZKyPFg1Iw0LaTWVPZVObVv4FvNlYjZ8cnp2bTTd1QbplIMHachsJ-4YCA9OV-Q4z0UTnnQU6Ll-_WX_PJitPN4MhK2jIpNyh2I6j-N_HeTbgwyP_2wO0QyACIX208_nbZPJhu8wz8KW4I-MN_yFy35J37ZPvhjzOZ5ntokch2MBjj5w91DPLx-hyjAE1uEUNdqjBETXYowYDanDU6c3V9QUOeMEOLzdXvxxScIsUDEjBXaTgFilP0OxgMns_TUP3jXRdjESqdE3ZkNScy8woKQqtWFYoCJB1IWVVVDKnmumcS10RRistM60V5QWVlaJM0aeovzxbmmcIjywjlDKM1OAvgv0XKs8qMWKCZjm8xjxHb90kleeeYKX0VNqkhHks_TyWUR8v7jP4JXrY4u4V6q9-rs1rcCJXaj-o8xY3v3Qu |
linkProvider | Ovid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+stochastic+graph+embedding+method+for+Alzheimer%E2%80%99s+disease+early%E2%80%90stage+prediction+and+intervention+evaluation&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Xu%2C+Mengjia&rft.au=Wang%2C+Zhijiang&rft.au=Zhang%2C+Haifeng&rft.au=Sanz%2C+David+Lopez&rft.date=2020-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.047329&rft.externalDBID=10.1002%252Falz.047329&rft.externalDocID=ALZ047329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |