A new stochastic graph embedding method for Alzheimer’s disease early‐stage prediction and intervention evaluation

Background Subtle alterations of functional brain networks associated with Alzheimer’s disease (AD) are important for a quantitative characterization of neurodegeneration, however prior studies primarily focused on handcrafted, domain‐specific (ad‐hoc) graph features (). Here we developed a novel de...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's & dementia Vol. 16
Main Authors Xu, Mengjia, Wang, Zhijiang, Zhang, Haifeng, Sanz, David Lopez, Garces, Pilar, Maestú, Fernando, Wang, Huali, Li, Quanzheng, Pantazis, Dimitrios
Format Journal Article
LanguageEnglish
Published 01.12.2020
Online AccessGet full text

Cover

Loading…
Abstract Background Subtle alterations of functional brain networks associated with Alzheimer’s disease (AD) are important for a quantitative characterization of neurodegeneration, however prior studies primarily focused on handcrafted, domain‐specific (ad‐hoc) graph features (). Here we developed a novel deep learning model that learns unsupervised brain network embeddings and automatically extracts AD‐related neural signatures. We assessed the robustness of the model in two downstream tasks, the prediction of conversion of mild cognitively impaired (MCI) patients to AD, and the evaluation of a multi‐domain cognitive intervention to amnestic MCI patients. Method We developed a graph Gaussian embedding method (MG2G) that uses a 3D encoder to learn intermediate representations through a sequence of hidden layers and outputs node‐wise low‐dimensional multivariate Gaussian distributions. Advantages of our model are that i) it discovers the intrinsic dimensionality of brain networks, ii) remaps brain data into a latent space amenable for supervised tasks such as AD classification, and iii) allows the use of the Wasserstein distance (W2) to define a metric space, and pinpoint subtle brain network alterations to specific brain regions. Result We used the MG2G model to embed MEG alpha band resting‐state network data from 48 stable MCI (S) patients, 28 progressive MCI (P) patients, and 53 age‐matched healthy elderly (N) subjects from the Madrid cohort. The obtained latent MEG brain network embeddings predicted AD progression as in Fig. 1. MG2G achieved higher performance than a completing model (node2vec) with 82% 3‐class classification, 93% 2‐class N/S classification, and 87% 2‐class S/P classification. We also computed functional brain networks from resting state fMRI data recorded from 12 aMCI patients before and after 12‐month of multi‐domain behavioral interventions. Using the W2 distance to quantify the probabilistic node‐wise embeddings in the latent space, we identified brain regions with intervention‐related functional alterations (Figs. 2 and 3). Conclusion MG2G provided a novel quantitative approach to assess complex functional connectivity patterns and learn highly‐informative network representations for different stages of AD while quantifying the uncertainty in the predicted outcomes. Acknowledgements: J‐Clinic for Machine Learning in Health at MIT; PSI2009‐14415C03‐01; PSI2012‐38375‐C03‐01; B2017/BMD‐3760; FJC2018‐037401‐I; Z161100000516001; D171100008217007.
AbstractList Background Subtle alterations of functional brain networks associated with Alzheimer’s disease (AD) are important for a quantitative characterization of neurodegeneration, however prior studies primarily focused on handcrafted, domain‐specific (ad‐hoc) graph features (). Here we developed a novel deep learning model that learns unsupervised brain network embeddings and automatically extracts AD‐related neural signatures. We assessed the robustness of the model in two downstream tasks, the prediction of conversion of mild cognitively impaired (MCI) patients to AD, and the evaluation of a multi‐domain cognitive intervention to amnestic MCI patients. Method We developed a graph Gaussian embedding method (MG2G) that uses a 3D encoder to learn intermediate representations through a sequence of hidden layers and outputs node‐wise low‐dimensional multivariate Gaussian distributions. Advantages of our model are that i) it discovers the intrinsic dimensionality of brain networks, ii) remaps brain data into a latent space amenable for supervised tasks such as AD classification, and iii) allows the use of the Wasserstein distance (W2) to define a metric space, and pinpoint subtle brain network alterations to specific brain regions. Result We used the MG2G model to embed MEG alpha band resting‐state network data from 48 stable MCI (S) patients, 28 progressive MCI (P) patients, and 53 age‐matched healthy elderly (N) subjects from the Madrid cohort. The obtained latent MEG brain network embeddings predicted AD progression as in Fig. 1. MG2G achieved higher performance than a completing model (node2vec) with 82% 3‐class classification, 93% 2‐class N/S classification, and 87% 2‐class S/P classification. We also computed functional brain networks from resting state fMRI data recorded from 12 aMCI patients before and after 12‐month of multi‐domain behavioral interventions. Using the W2 distance to quantify the probabilistic node‐wise embeddings in the latent space, we identified brain regions with intervention‐related functional alterations (Figs. 2 and 3). Conclusion MG2G provided a novel quantitative approach to assess complex functional connectivity patterns and learn highly‐informative network representations for different stages of AD while quantifying the uncertainty in the predicted outcomes. Acknowledgements: J‐Clinic for Machine Learning in Health at MIT; PSI2009‐14415C03‐01; PSI2012‐38375‐C03‐01; B2017/BMD‐3760; FJC2018‐037401‐I; Z161100000516001; D171100008217007.
Author Maestú, Fernando
Zhang, Haifeng
Garces, Pilar
Wang, Zhijiang
Li, Quanzheng
Sanz, David Lopez
Wang, Huali
Pantazis, Dimitrios
Xu, Mengjia
Author_xml – sequence: 1
  givenname: Mengjia
  surname: Xu
  fullname: Xu, Mengjia
  email: mengjia_xu1@hotmail.com
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Zhijiang
  surname: Wang
  fullname: Wang, Zhijiang
  organization: Peking University Institute of Mental Health (Sixth Hospital)
– sequence: 3
  givenname: Haifeng
  surname: Zhang
  fullname: Zhang, Haifeng
  organization: Peking University Institute of Mental Health (Sixth Hospital)
– sequence: 4
  givenname: David Lopez
  surname: Sanz
  fullname: Sanz, David Lopez
  organization: Center for Biomedical Technology Polytechnic University
– sequence: 5
  givenname: Pilar
  surname: Garces
  fullname: Garces, Pilar
  organization: Complutense University of Madrid
– sequence: 6
  givenname: Fernando
  surname: Maestú
  fullname: Maestú, Fernando
  organization: Complutense University of Madrid
– sequence: 7
  givenname: Huali
  surname: Wang
  fullname: Wang, Huali
  organization: National Clinical Research Center for Mental Disorders
– sequence: 8
  givenname: Quanzheng
  surname: Li
  fullname: Li, Quanzheng
  organization: Massachusetts General Hospital
– sequence: 9
  givenname: Dimitrios
  surname: Pantazis
  fullname: Pantazis, Dimitrios
  organization: Massachusetts Institute of Technology
BookMark eNo9kL1uwjAURq2KSgXapU_gFwi1YxuTMUL9k5C6MHWJruMb4ipxkB1AMPEIXft6PElLqTp9R99whjMiA995JOSeswlnLH2A5jBhUos0uyJDrlSaqFRng3-eshsyivGDMclmXA3JNqcedzT2XVlD7F1JVwHWNcXWoLXOr2iLfd1ZWnWB5s2hRtdiOB2_IrUuIkSkCKHZn46fsYcV0nVA68redZ6Ct9T5HsMW_e-BW2g2cMZbcl1BE_Hub8dk-fS4nL8ki7fn13m-SDZ6liXGVkKytFIKOBrItDWSayOzzGqAUpcwFVbaqQJbplKUFri1RigtoDRCGjEm_KLduQb3xTq4FsK-4Kw41yp-ahWXWkW-eL-Q-AaKIGeM
ContentType Journal Article
Copyright 2020 the Alzheimer's Association
Copyright_xml – notice: 2020 the Alzheimer's Association
DOI 10.1002/alz.047329
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1552-5279
EndPage n/a
ExternalDocumentID ALZ047329
Genre abstract
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AACTN
AAEDT
AAHHS
AAIKJ
AAKOC
AALRI
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCFJ
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ADBBV
ADBTR
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
ADZOD
AEEZP
AEIGN
AEKER
AENEX
AEQDE
AEUYR
AEVXI
AFKRA
AFTJW
AFWVQ
AGHFR
AGUBO
AGWIK
AGYEJ
AITUG
AIURR
AIWBW
AJBDE
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMFUW
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PIMPY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
T5K
TEORI
UKHRP
~G-
ID FETCH-LOGICAL-u789-bdf3402f55a1eba97db417b499d7aac7ca63d4d65adc243cda1ddb3573acb34b3
ISSN 1552-5260
IngestDate Wed Jan 22 16:31:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-u789-bdf3402f55a1eba97db417b499d7aac7ca63d4d65adc243cda1ddb3573acb34b3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.047329
PageCount 1
ParticipantIDs wiley_primary_10_1002_alz_047329_ALZ047329
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Alzheimer's & dementia
PublicationYear 2020
SSID ssj0040815
Score 2.276405
Snippet Background Subtle alterations of functional brain networks associated with Alzheimer’s disease (AD) are important for a quantitative characterization of...
SourceID wiley
SourceType Publisher
Title A new stochastic graph embedding method for Alzheimer’s disease early‐stage prediction and intervention evaluation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.047329
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFtQLEs9oDJyyHeB929hhBqghVcCBA1Iu16103rkpa0aSHnPoTuPbv9Zd09pG1K0CiXCxrsrKVnc-zM7Oz3yD0pqaaSi4gLFFDnjJhilQQ48r-OCXw9RHp2D4_5dOv7OOcz3u9607V0nqlBtXmj-dK_kerIAO92lOy99BsfCgI4B70C1fQMFz_Scdj2xA8AfetWkjLt5w4-unE_FBGu8Mqvj-0KyUcn24WprG9UkJ5g7jY7s4kxrIcx7IH8BeP7fEpu4Wz2lYrN93ayJYivOvbtm-wewAWUtrlHpto-edrl381y-OTVvg9ZKyPFg1Iw0LaTWVPZVObVv4FvNlYjZ8cnp2bTTd1QbplIMHachsJ-4YCA9OV-Q4z0UTnnQU6Ll-_WX_PJitPN4MhK2jIpNyh2I6j-N_HeTbgwyP_2wO0QyACIX208_nbZPJhu8wz8KW4I-MN_yFy35J37ZPvhjzOZ5ntokch2MBjj5w91DPLx-hyjAE1uEUNdqjBETXYowYDanDU6c3V9QUOeMEOLzdXvxxScIsUDEjBXaTgFilP0OxgMns_TUP3jXRdjESqdE3ZkNScy8woKQqtWFYoCJB1IWVVVDKnmumcS10RRistM60V5QWVlaJM0aeovzxbmmcIjywjlDKM1OAvgv0XKs8qMWKCZjm8xjxHb90kleeeYKX0VNqkhHks_TyWUR8v7jP4JXrY4u4V6q9-rs1rcCJXaj-o8xY3v3Qu
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+stochastic+graph+embedding+method+for+Alzheimer%E2%80%99s+disease+early%E2%80%90stage+prediction+and+intervention+evaluation&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Xu%2C+Mengjia&rft.au=Wang%2C+Zhijiang&rft.au=Zhang%2C+Haifeng&rft.au=Sanz%2C+David+Lopez&rft.date=2020-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.047329&rft.externalDBID=10.1002%252Falz.047329&rft.externalDocID=ALZ047329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon