Disease progression modeling‐based prediction of cognitive decline

Background The objective of this study is to investigate decline prediction of cognitive test scores in stable and converting mild cognitive impairment (MCI) subjects using both nonparametric and parametric Alzheimer’s disease (AD) progression modeling methods trained on data including cognitive tes...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's & dementia Vol. 16
Main Authors Ghazi, Mostafa Mehdipour, Sørensen, Lauge, Pai, Akshay, Cardoso, Jorge, Modat, Marc, Ourselin, Sebastien, Nielsen, Mads
Format Journal Article
LanguageEnglish
Published 01.12.2020
Online AccessGet full text
ISSN1552-5260
1552-5279
DOI10.1002/alz.043850

Cover

Loading…
Abstract Background The objective of this study is to investigate decline prediction of cognitive test scores in stable and converting mild cognitive impairment (MCI) subjects using both nonparametric and parametric Alzheimer’s disease (AD) progression modeling methods trained on data including cognitive tests, CSF measures, and neuroimaging biomarkers. Method The study dataset consisted of yearly visits (2005‐2017) for 782 Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects with normal cognition, MCI, or AD, including FreeSurfer‐based T1‐weighted brain MRI volumes (ventricles, hippocampus, whole brain, fusiform, and entorhinal cortex, all normalized with intracranial volume), cognitive tests (MMSE, CDR‐SB, ADAS‐Cog‐13, FAQ, and RAVLT‐immediate‐recall), CSF measures (Amyloid‐beta and p‐tau), and FDG‐PET. Two state‐of‐the‐art disease progression modeling methods, a nonparametric using LSTMs (Ghazi, M. M., et al., Medical Image Analysis 53, 39‐46, 2019) and a parametric using regression (Jedynak, B. M., et al., Neurobiology of Aging 36, 178‐184, 2015), were trained on 632 subjects and subsequently applied to predict month 24 to 96 MMSE scores for 150 independent test subjects using only their baseline and month 12 data. Result The predictive power and prognostic capability of the AD progression modeling methods were assessed using the per‐visit mean absolute error (MAE) and area under the ROC curve (AUC) of predicted MMSE scores for stable MCI (sMCI) and converting MCI (cMCI) test subjects. The average MAE results for month 24 to 96 MMSE scores were as follows: nonparametric 1.39 to 1.04 (sMCI), 2.41 to 3.62 (cMCI); parametric 1.46 to 4.00 (sMCI), 2.42 to 2.53 (cMCI). The average AUC results for month 24 to 96 obtained based on the predicted MMSE scores were as follows (two‐sample t‐test, p < 0.001 in all cases): nonparametric 0.79 to 0.73; parametric 0.83 to 0.69. Conclusion In almost all cases, the nonparametric method outperforms the parametric model in predicting MMSE scores. Moreover, predictions from both nonparametric and parametric methods can significantly discriminate between sMCI and cMCI groups. Though, the discrimination capability of the nonparametric method is superior in long‐term prediction of cognitive decline.
AbstractList Background The objective of this study is to investigate decline prediction of cognitive test scores in stable and converting mild cognitive impairment (MCI) subjects using both nonparametric and parametric Alzheimer’s disease (AD) progression modeling methods trained on data including cognitive tests, CSF measures, and neuroimaging biomarkers. Method The study dataset consisted of yearly visits (2005‐2017) for 782 Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects with normal cognition, MCI, or AD, including FreeSurfer‐based T1‐weighted brain MRI volumes (ventricles, hippocampus, whole brain, fusiform, and entorhinal cortex, all normalized with intracranial volume), cognitive tests (MMSE, CDR‐SB, ADAS‐Cog‐13, FAQ, and RAVLT‐immediate‐recall), CSF measures (Amyloid‐beta and p‐tau), and FDG‐PET. Two state‐of‐the‐art disease progression modeling methods, a nonparametric using LSTMs (Ghazi, M. M., et al., Medical Image Analysis 53, 39‐46, 2019) and a parametric using regression (Jedynak, B. M., et al., Neurobiology of Aging 36, 178‐184, 2015), were trained on 632 subjects and subsequently applied to predict month 24 to 96 MMSE scores for 150 independent test subjects using only their baseline and month 12 data. Result The predictive power and prognostic capability of the AD progression modeling methods were assessed using the per‐visit mean absolute error (MAE) and area under the ROC curve (AUC) of predicted MMSE scores for stable MCI (sMCI) and converting MCI (cMCI) test subjects. The average MAE results for month 24 to 96 MMSE scores were as follows: nonparametric 1.39 to 1.04 (sMCI), 2.41 to 3.62 (cMCI); parametric 1.46 to 4.00 (sMCI), 2.42 to 2.53 (cMCI). The average AUC results for month 24 to 96 obtained based on the predicted MMSE scores were as follows (two‐sample t‐test, p < 0.001 in all cases): nonparametric 0.79 to 0.73; parametric 0.83 to 0.69. Conclusion In almost all cases, the nonparametric method outperforms the parametric model in predicting MMSE scores. Moreover, predictions from both nonparametric and parametric methods can significantly discriminate between sMCI and cMCI groups. Though, the discrimination capability of the nonparametric method is superior in long‐term prediction of cognitive decline.
Author Modat, Marc
Cardoso, Jorge
Nielsen, Mads
Ghazi, Mostafa Mehdipour
Pai, Akshay
Ourselin, Sebastien
Sørensen, Lauge
Author_xml – sequence: 1
  givenname: Mostafa Mehdipour
  surname: Ghazi
  fullname: Ghazi, Mostafa Mehdipour
  email: mehdipour@biomediq.com
  organization: University College London ‐ University of Copenhagen
– sequence: 2
  givenname: Lauge
  surname: Sørensen
  fullname: Sørensen, Lauge
  organization: Cerebriu A/S
– sequence: 3
  givenname: Akshay
  surname: Pai
  fullname: Pai, Akshay
  organization: Biomediq A/S
– sequence: 4
  givenname: Jorge
  surname: Cardoso
  fullname: Cardoso, Jorge
  organization: KCL School of Biomedical Engineering and Imaging Sciences
– sequence: 5
  givenname: Marc
  surname: Modat
  fullname: Modat, Marc
  organization: Centre for Medical Image Computing, UCL
– sequence: 6
  givenname: Sebastien
  surname: Ourselin
  fullname: Ourselin, Sebastien
  organization: Centre for Medical Image Computing, UCL
– sequence: 7
  givenname: Mads
  surname: Nielsen
  fullname: Nielsen, Mads
  organization: Cerebriu A/S
BookMark eNo9j9FKwzAUhoNMcJve-AR9gc5z0iRtL8emTih4sytvQpqcjkjXjGYq88pH8Bl9Ejsqwg_nh-_wwzdjky50xNgtwgIB-J1pPxcgskLCBZuilDyVPC8n_13BFZvF-AogoEA5Zeu1j2QiJYc-7HqK0Ycu2QdHre92P1_f9cDcAMl5ezyz0CQ27Dp_9O-UOLLDH12zy8a0kW7-7pxtH-63q01aPT8-rZZV-pYXkLoiU1C7WpRSlVggFwZzzBpAIa1QNATQ2hoVNIJDzq1qnIG6zJ0TzspsznCc_fAtnfSh93vTnzSCPrvrwV2P7npZvYwt-wVTi1HZ
ContentType Journal Article
Copyright 2020 the Alzheimer's Association
Copyright_xml – notice: 2020 the Alzheimer's Association
DOI 10.1002/alz.043850
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1552-5279
EndPage n/a
ExternalDocumentID ALZ043850
Genre abstract
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AACTN
AAEDT
AAHHS
AAIKJ
AAKOC
AALRI
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCFJ
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ADBBV
ADBTR
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
ADZOD
AEEZP
AEIGN
AEKER
AENEX
AEQDE
AEUYR
AEVXI
AFKRA
AFTJW
AFWVQ
AGHFR
AGUBO
AGWIK
AGYEJ
AITUG
AIURR
AIWBW
AJBDE
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMFUW
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PIMPY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
T5K
TEORI
UKHRP
~G-
ID FETCH-LOGICAL-u780-d8360bdb4956918124a1713f0145c46e46e01ccb160f42072c6fda0b97dd4dc53
ISSN 1552-5260
IngestDate Wed Jan 22 16:31:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-u780-d8360bdb4956918124a1713f0145c46e46e01ccb160f42072c6fda0b97dd4dc53
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.043850
PageCount 1
ParticipantIDs wiley_primary_10_1002_alz_043850_ALZ043850
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Alzheimer's & dementia
PublicationYear 2020
SSID ssj0040815
Score 2.276672
Snippet Background The objective of this study is to investigate decline prediction of cognitive test scores in stable and converting mild cognitive impairment (MCI)...
SourceID wiley
SourceType Publisher
Title Disease progression modeling‐based prediction of cognitive decline
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.043850
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JattAGB6a-JJLaGlL0w0dekqRMxqPtqMTuzXFbntwi-lFzKbKxMjGy8WnPEKeMU_Sf2akkUxaSApCiPEgrPk__n1B6APDWESC9HwwvTgYKGnuJzSgfsqFZKEUeu6Rzrb4Go1-0C-zcNaKmOrqki3viv1f60r-h6qwBnTVVbKPoKx7KSzAM9AX7kBhuD-IxgMbXbFJVrbBhh1to6uY6ywGLadMLwA5F7V62CQNSaVrIw_ygfqLfaHmZqpKvDHQkMaHOHcc_HPB9iYLYLIE5TJnHyeqkPMV_GXnsNEB-MtkrcrKwzNmu98OQ9_tDOz-9aZocniuAKvLjQ0EaT992x9B2rkdFQsNtXlrpwR0VXvNjo1xfDdqSV0nk-6xdNsili32XR20DHEjuOpgvdsV_nufbfE7_mV_O0IdAmYFMPLOt5_D4aCW3RQUpNB02K2-wTW0JRfNmw_tGKOITJ-i08qC8PoWDs_QE1U-R4MKCl4LCl4NhbubWwMCrwGBt8w9BwKvAsELNP00nF6N_GpAhr-LE-xLXYDDJdc2bmo0NRbEQS_XkWJBIwUXDoTgQYRzSnBMRJRLhnkaS0mlCHsv0XG5LNUr5DEhSZoQKhMBCimPEqKiXpwmlOOAhzk7Q-fmk7OV7YGS2W7XJINTyeypZO50Xz9m8xt00qDoLTrernfqHeh5W_6-Is4fN7dP0A
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disease+progression+modeling%E2%80%90based+prediction+of+cognitive+decline&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Ghazi%2C+Mostafa+Mehdipour&rft.au=S%C3%B8rensen%2C+Lauge&rft.au=Pai%2C+Akshay&rft.au=Cardoso%2C+Jorge&rft.date=2020-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.043850&rft.externalDBID=10.1002%252Falz.043850&rft.externalDocID=ALZ043850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon