Disease progression modeling‐based prediction of cognitive decline
Background The objective of this study is to investigate decline prediction of cognitive test scores in stable and converting mild cognitive impairment (MCI) subjects using both nonparametric and parametric Alzheimer’s disease (AD) progression modeling methods trained on data including cognitive tes...
Saved in:
Published in | Alzheimer's & dementia Vol. 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2020
|
Online Access | Get full text |
ISSN | 1552-5260 1552-5279 |
DOI | 10.1002/alz.043850 |
Cover
Loading…
Abstract | Background
The objective of this study is to investigate decline prediction of cognitive test scores in stable and converting mild cognitive impairment (MCI) subjects using both nonparametric and parametric Alzheimer’s disease (AD) progression modeling methods trained on data including cognitive tests, CSF measures, and neuroimaging biomarkers.
Method
The study dataset consisted of yearly visits (2005‐2017) for 782 Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects with normal cognition, MCI, or AD, including FreeSurfer‐based T1‐weighted brain MRI volumes (ventricles, hippocampus, whole brain, fusiform, and entorhinal cortex, all normalized with intracranial volume), cognitive tests (MMSE, CDR‐SB, ADAS‐Cog‐13, FAQ, and RAVLT‐immediate‐recall), CSF measures (Amyloid‐beta and p‐tau), and FDG‐PET. Two state‐of‐the‐art disease progression modeling methods, a nonparametric using LSTMs (Ghazi, M. M., et al., Medical Image Analysis 53, 39‐46, 2019) and a parametric using regression (Jedynak, B. M., et al., Neurobiology of Aging 36, 178‐184, 2015), were trained on 632 subjects and subsequently applied to predict month 24 to 96 MMSE scores for 150 independent test subjects using only their baseline and month 12 data.
Result
The predictive power and prognostic capability of the AD progression modeling methods were assessed using the per‐visit mean absolute error (MAE) and area under the ROC curve (AUC) of predicted MMSE scores for stable MCI (sMCI) and converting MCI (cMCI) test subjects. The average MAE results for month 24 to 96 MMSE scores were as follows: nonparametric 1.39 to 1.04 (sMCI), 2.41 to 3.62 (cMCI); parametric 1.46 to 4.00 (sMCI), 2.42 to 2.53 (cMCI). The average AUC results for month 24 to 96 obtained based on the predicted MMSE scores were as follows (two‐sample t‐test, p < 0.001 in all cases): nonparametric 0.79 to 0.73; parametric 0.83 to 0.69.
Conclusion
In almost all cases, the nonparametric method outperforms the parametric model in predicting MMSE scores. Moreover, predictions from both nonparametric and parametric methods can significantly discriminate between sMCI and cMCI groups. Though, the discrimination capability of the nonparametric method is superior in long‐term prediction of cognitive decline. |
---|---|
AbstractList | Background
The objective of this study is to investigate decline prediction of cognitive test scores in stable and converting mild cognitive impairment (MCI) subjects using both nonparametric and parametric Alzheimer’s disease (AD) progression modeling methods trained on data including cognitive tests, CSF measures, and neuroimaging biomarkers.
Method
The study dataset consisted of yearly visits (2005‐2017) for 782 Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects with normal cognition, MCI, or AD, including FreeSurfer‐based T1‐weighted brain MRI volumes (ventricles, hippocampus, whole brain, fusiform, and entorhinal cortex, all normalized with intracranial volume), cognitive tests (MMSE, CDR‐SB, ADAS‐Cog‐13, FAQ, and RAVLT‐immediate‐recall), CSF measures (Amyloid‐beta and p‐tau), and FDG‐PET. Two state‐of‐the‐art disease progression modeling methods, a nonparametric using LSTMs (Ghazi, M. M., et al., Medical Image Analysis 53, 39‐46, 2019) and a parametric using regression (Jedynak, B. M., et al., Neurobiology of Aging 36, 178‐184, 2015), were trained on 632 subjects and subsequently applied to predict month 24 to 96 MMSE scores for 150 independent test subjects using only their baseline and month 12 data.
Result
The predictive power and prognostic capability of the AD progression modeling methods were assessed using the per‐visit mean absolute error (MAE) and area under the ROC curve (AUC) of predicted MMSE scores for stable MCI (sMCI) and converting MCI (cMCI) test subjects. The average MAE results for month 24 to 96 MMSE scores were as follows: nonparametric 1.39 to 1.04 (sMCI), 2.41 to 3.62 (cMCI); parametric 1.46 to 4.00 (sMCI), 2.42 to 2.53 (cMCI). The average AUC results for month 24 to 96 obtained based on the predicted MMSE scores were as follows (two‐sample t‐test, p < 0.001 in all cases): nonparametric 0.79 to 0.73; parametric 0.83 to 0.69.
Conclusion
In almost all cases, the nonparametric method outperforms the parametric model in predicting MMSE scores. Moreover, predictions from both nonparametric and parametric methods can significantly discriminate between sMCI and cMCI groups. Though, the discrimination capability of the nonparametric method is superior in long‐term prediction of cognitive decline. |
Author | Modat, Marc Cardoso, Jorge Nielsen, Mads Ghazi, Mostafa Mehdipour Pai, Akshay Ourselin, Sebastien Sørensen, Lauge |
Author_xml | – sequence: 1 givenname: Mostafa Mehdipour surname: Ghazi fullname: Ghazi, Mostafa Mehdipour email: mehdipour@biomediq.com organization: University College London ‐ University of Copenhagen – sequence: 2 givenname: Lauge surname: Sørensen fullname: Sørensen, Lauge organization: Cerebriu A/S – sequence: 3 givenname: Akshay surname: Pai fullname: Pai, Akshay organization: Biomediq A/S – sequence: 4 givenname: Jorge surname: Cardoso fullname: Cardoso, Jorge organization: KCL School of Biomedical Engineering and Imaging Sciences – sequence: 5 givenname: Marc surname: Modat fullname: Modat, Marc organization: Centre for Medical Image Computing, UCL – sequence: 6 givenname: Sebastien surname: Ourselin fullname: Ourselin, Sebastien organization: Centre for Medical Image Computing, UCL – sequence: 7 givenname: Mads surname: Nielsen fullname: Nielsen, Mads organization: Cerebriu A/S |
BookMark | eNo9j9FKwzAUhoNMcJve-AR9gc5z0iRtL8emTih4sytvQpqcjkjXjGYq88pH8Bl9Ejsqwg_nh-_wwzdjky50xNgtwgIB-J1pPxcgskLCBZuilDyVPC8n_13BFZvF-AogoEA5Zeu1j2QiJYc-7HqK0Ycu2QdHre92P1_f9cDcAMl5ezyz0CQ27Dp_9O-UOLLDH12zy8a0kW7-7pxtH-63q01aPT8-rZZV-pYXkLoiU1C7WpRSlVggFwZzzBpAIa1QNATQ2hoVNIJDzq1qnIG6zJ0TzspsznCc_fAtnfSh93vTnzSCPrvrwV2P7npZvYwt-wVTi1HZ |
ContentType | Journal Article |
Copyright | 2020 the Alzheimer's Association |
Copyright_xml | – notice: 2020 the Alzheimer's Association |
DOI | 10.1002/alz.043850 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1552-5279 |
EndPage | n/a |
ExternalDocumentID | ALZ043850 |
Genre | abstract |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AACTN AAEDT AAHHS AAIKJ AAKOC AALRI AANLZ AAOAW AAXLA AAXUO AAYCA ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCFJ ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACXQS ADBBV ADBTR ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN ADZOD AEEZP AEIGN AEKER AENEX AEQDE AEUYR AEVXI AFKRA AFTJW AFWVQ AGHFR AGUBO AGWIK AGYEJ AITUG AIURR AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMFUW AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PIMPY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ T5K TEORI UKHRP ~G- |
ID | FETCH-LOGICAL-u780-d8360bdb4956918124a1713f0145c46e46e01ccb160f42072c6fda0b97dd4dc53 |
ISSN | 1552-5260 |
IngestDate | Wed Jan 22 16:31:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-u780-d8360bdb4956918124a1713f0145c46e46e01ccb160f42072c6fda0b97dd4dc53 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.043850 |
PageCount | 1 |
ParticipantIDs | wiley_primary_10_1002_alz_043850_ALZ043850 |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Alzheimer's & dementia |
PublicationYear | 2020 |
SSID | ssj0040815 |
Score | 2.276672 |
Snippet | Background
The objective of this study is to investigate decline prediction of cognitive test scores in stable and converting mild cognitive impairment (MCI)... |
SourceID | wiley |
SourceType | Publisher |
Title | Disease progression modeling‐based prediction of cognitive decline |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.043850 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JattAGB6a-JJLaGlL0w0dekqRMxqPtqMTuzXFbntwi-lFzKbKxMjGy8WnPEKeMU_Sf2akkUxaSApCiPEgrPk__n1B6APDWESC9HwwvTgYKGnuJzSgfsqFZKEUeu6Rzrb4Go1-0C-zcNaKmOrqki3viv1f60r-h6qwBnTVVbKPoKx7KSzAM9AX7kBhuD-IxgMbXbFJVrbBhh1to6uY6ywGLadMLwA5F7V62CQNSaVrIw_ygfqLfaHmZqpKvDHQkMaHOHcc_HPB9iYLYLIE5TJnHyeqkPMV_GXnsNEB-MtkrcrKwzNmu98OQ9_tDOz-9aZocniuAKvLjQ0EaT992x9B2rkdFQsNtXlrpwR0VXvNjo1xfDdqSV0nk-6xdNsili32XR20DHEjuOpgvdsV_nufbfE7_mV_O0IdAmYFMPLOt5_D4aCW3RQUpNB02K2-wTW0JRfNmw_tGKOITJ-i08qC8PoWDs_QE1U-R4MKCl4LCl4NhbubWwMCrwGBt8w9BwKvAsELNP00nF6N_GpAhr-LE-xLXYDDJdc2bmo0NRbEQS_XkWJBIwUXDoTgQYRzSnBMRJRLhnkaS0mlCHsv0XG5LNUr5DEhSZoQKhMBCimPEqKiXpwmlOOAhzk7Q-fmk7OV7YGS2W7XJINTyeypZO50Xz9m8xt00qDoLTrernfqHeh5W_6-Is4fN7dP0A |
linkProvider | Ovid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disease+progression+modeling%E2%80%90based+prediction+of+cognitive+decline&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Ghazi%2C+Mostafa+Mehdipour&rft.au=S%C3%B8rensen%2C+Lauge&rft.au=Pai%2C+Akshay&rft.au=Cardoso%2C+Jorge&rft.date=2020-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.043850&rft.externalDBID=10.1002%252Falz.043850&rft.externalDocID=ALZ043850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |