基于MBI-PBI-ResNet的超短期光伏功率预测
为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition,SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法.首先,使用快速傅里叶变换(fast fourier transform,FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering,AdAP)实现相似日聚类.其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征.最后,利用 MBI-PBI-...
Saved in:
Published in | 电力系统保护与控制 Vol. 52; no. 2; pp. 165 - 176 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition,SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法.首先,使用快速傅里叶变换(fast fourier transform,FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering,AdAP)实现相似日聚类.其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征.最后,利用 MBI-PBI-ResNet 来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测.研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力. |
---|---|
AbstractList | 为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition,SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法.首先,使用快速傅里叶变换(fast fourier transform,FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering,AdAP)实现相似日聚类.其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征.最后,利用 MBI-PBI-ResNet 来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测.研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力. |
Abstract_FL | To enhance the stability of photovoltaic(PV)grid connection and improve the accuracy of PV power prediction,an ultra-short-term prediction method of PV power based on similar day clustering,swarm decomposition(SWD)and MBI-PBI-ResNet network deep learning network model is proposed.First,the expected frequency of solar irradiance is extracted using a fast Fourier transform(FFT).This is used as a clustering eigenvector,and similar day clustering is achieved using adaptive affinity propagation clustering(AdAP)based on this clustering eigenvector.Second,each class of similar days is decomposed separately using swarm decomposition algorithms to extract the multi-scale fluctuation pattern features of the original data.Finally,MBI-PBI-ResNet is used to realize the mining of temporal features under the influence of multivariate correlation of weather environment.Also it is used for the mining of spatial features of local waveforms and long time-dependent temporal features of multiscale components at the same time,as well as the combined integration of different types of features to realize ultra-short-term prediction of PV power generation.The results show that this method improves the prediction accuracy by more than 3%compared with other deep learning methods in the field of ultra-short-term prediction of photovoltaic power.This indicates that this method has higher prediction accuracy and stronger generalizability in the field of ultra-short-term prediction of photovoltaic power. |
Author | 陈臣鹏 毕贵红 赵鑫 骆钊 黄泽 谢旭 张梓睿 |
AuthorAffiliation | 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212 |
AuthorAffiliation_xml | – name: 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212 |
Author_FL | BI Guihong LUO Zhao HUANG Ze XIE Xu ZHANG Zirui ZHAO Xin CHEN Chenpeng |
Author_FL_xml | – sequence: 1 fullname: HUANG Ze – sequence: 2 fullname: BI Guihong – sequence: 3 fullname: XIE Xu – sequence: 4 fullname: ZHAO Xin – sequence: 5 fullname: CHEN Chenpeng – sequence: 6 fullname: ZHANG Zirui – sequence: 7 fullname: LUO Zhao |
Author_xml | – sequence: 1 fullname: 黄泽 – sequence: 2 fullname: 毕贵红 – sequence: 3 fullname: 谢旭 – sequence: 4 fullname: 赵鑫 – sequence: 5 fullname: 陈臣鹏 – sequence: 6 fullname: 张梓睿 – sequence: 7 fullname: 骆钊 |
BookMark | eNotjctKAzEUQLOoYK39ArduZ0xuXpOlFh-F-kC6L0kmkY6SVqP4Ay1ShboXYcC9S10UP6fT6l9Y0MXh7M7ZQLUwCA6hLYJTomRGd4rUhst-OoxDmwLFmeQ1VCdCsoQywtdRM8a-wZgSzkWm6giqcjafTY_32snZinMXT9zt8mX0_Tlelu-L17IaT-Zfz9VjuZw-_LyNFh9Pm2jN66vomv9uoO7Bfrd1lHROD9ut3U4SlRIJdcyC4c55yI3UAlvBdWaNJiqzwnlmbS6ZA2BKMW_Bci41J5pgA95oSRto-y97r4PX4aJXDO5uwmrYK_JrwMAwYCLoL0rjVPI |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.19783/j.cnki.pspc.230875 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Ultra-short-term PV power prediction based on MBI-PBI-ResNet |
EndPage | 176 |
ExternalDocumentID | jdq202402016 |
GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-s996-3e4c2b5eef2db7a60c65a8cba198c6ef4ccd74e224994fc2c557a51a10b2fba73 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 04:03:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | photovoltaic power 并联网络 光伏发电 功率预测 相似日聚类 power prediction similar day clustering parallel network |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s996-3e4c2b5eef2db7a60c65a8cba198c6ef4ccd74e224994fc2c557a51a10b2fba73 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_jdq202402016 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitle_FL | Power System Protection and Control |
PublicationYear | 2024 |
Publisher | 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212 |
Publisher_xml | – name: 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212 |
SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
Score | 2.4152477 |
Snippet | 为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition,SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法.首先,使用快速傅里叶变换(fast fourier... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 165 |
Title | 基于MBI-PBI-ResNet的超短期光伏功率预测 |
URI | https://d.wanfangdata.com.cn/periodical/jdq202402016 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1LaxQxeKjtxYsoKr4qRcypTJ1kJpnJcWZ3liq0iFTorcwjq1ZYq7u99NwiKtS7CAvePeqh-HP60H_h932T7qZuUdvDhuz3yvcImS8hD8-7z2EADGoT-qJUtR-ZIvFL-JL4MopLUfOyMgEeFF5aVotPo0ercnVq5p6za2lzUC5UW6eeKzlPVAEGccVTsmeI7EgoAKAO8YUSIgzlf8WY5ZLpDstSlkdYJvlS9tB_DL8npr9sBiyPmQZwxPKEZYolkiAdlrZZrphuYR1kADzRJKPFkgaSEioGkSyJWa5ZKkiOYhlgMzenJZkRwi1jhpAsZFlTyUgUEHSYpnaBJo0IkqB8hOQsjYkd9TzuBNgscNtmQV57jFEsBXGSDGvajtEDqRiTACZAtdHSmKXtExhJPJppztLMXfoQ40VP4gQV1XElJ1MDgoAAEEo2gzGN9uDWVJ3mjhExlCAnc4hBBXKuaNkggkbI2Aal5yc1mIdcV-LL2tJSoVKAQO-Qm3IMK1YEKQUVTv5X6A1w1Vg74AIaTs1mlh14sSeQUmBo0zfSFlU6GK8msikJBMomfABHOZNNSOo_fzMObG9EAJrPK4UvZ5Bx1Duwn0r0IGqnMd5Zx7Fp0tHnswmIwZSWbVQTChyZxY5NTiyBC-04g5V_hpAL7iy34xEdH_I86eYLUjjjonA-_rx59cTmkbx512giRcG1VspRqt7LFwsb_Y0KD2MksRxnZKN9suv1a-z3MKXj6oI3I2AqLJxlI5ti4-F15xuNdwqO_sP0TSk9XnIIYQbivoAheRhH0u6kwOxVaLz0EXd-j4y3l7Wh4g8m1abTjr1u0XvmJOYrl71LdkY9lzbD4xVvauv5VU8cDPf293ZPDodHn7Z_ft85Gn49_Dw82Hm3_-Pjwfvh0e7bX1-2D799uOatdPKV1qJvn4fx-3hyIjRRJUppTFfUZVyooFKySKqy4DqplOlGVVXHkYEpitZRtxKVlHEhecGDUnTLIg6ve9O9Vz1zw5sTopuoWteqiEJ8vk_jJdHGhCoMyjAM65verDVxzY7-_TU3NLf-gb_tXcR6s3J7x5sevNk0szCXGZR3KZi_ASt-2VI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMBI-PBI-ResNet%E7%9A%84%E8%B6%85%E7%9F%AD%E6%9C%9F%E5%85%89%E4%BC%8F%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%BB%84%E6%B3%BD&rft.au=%E6%AF%95%E8%B4%B5%E7%BA%A2&rft.au=%E8%B0%A2%E6%97%AD&rft.au=%E8%B5%B5%E9%91%AB&rft.date=2024&rft.pub=%E6%98%86%E6%98%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%8A%9B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500%25%E5%8D%8E%E8%83%BD%E6%BE%9C%E6%B2%A7%E6%B1%9F%E6%B0%B4%E7%94%B5%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E7%B3%AF%E6%89%8E%E6%B8%A1%E6%B0%B4%E7%94%B5%E5%8E%82%2C%E4%BA%91%E5%8D%97+%E6%99%AE%E6%B4%B1+665000%25%E4%B8%AD%E5%9B%BD%E9%95%BF%E6%B1%9F%E7%94%B5%E5%8A%9B%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E4%B9%8C%E4%B8%9C%E5%BE%B7%E6%B0%B4%E5%8A%9B%E5%8F%91%E7%94%B5%E5%8E%82%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+651212&rft.issn=1674-3415&rft.volume=52&rft.issue=2&rft.spage=165&rft.epage=176&rft_id=info:doi/10.19783%2Fj.cnki.pspc.230875&rft.externalDocID=jdq202402016 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |