基于MBI-PBI-ResNet的超短期光伏功率预测

为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition,SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法.首先,使用快速傅里叶变换(fast fourier transform,FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering,AdAP)实现相似日聚类.其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征.最后,利用 MBI-PBI-...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 2; pp. 165 - 176
Main Authors 黄泽, 毕贵红, 谢旭, 赵鑫, 陈臣鹏, 张梓睿, 骆钊
Format Journal Article
LanguageChinese
Published 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition,SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法.首先,使用快速傅里叶变换(fast fourier transform,FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering,AdAP)实现相似日聚类.其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征.最后,利用 MBI-PBI-ResNet 来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测.研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力.
AbstractList 为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition,SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法.首先,使用快速傅里叶变换(fast fourier transform,FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering,AdAP)实现相似日聚类.其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征.最后,利用 MBI-PBI-ResNet 来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测.研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力.
Abstract_FL To enhance the stability of photovoltaic(PV)grid connection and improve the accuracy of PV power prediction,an ultra-short-term prediction method of PV power based on similar day clustering,swarm decomposition(SWD)and MBI-PBI-ResNet network deep learning network model is proposed.First,the expected frequency of solar irradiance is extracted using a fast Fourier transform(FFT).This is used as a clustering eigenvector,and similar day clustering is achieved using adaptive affinity propagation clustering(AdAP)based on this clustering eigenvector.Second,each class of similar days is decomposed separately using swarm decomposition algorithms to extract the multi-scale fluctuation pattern features of the original data.Finally,MBI-PBI-ResNet is used to realize the mining of temporal features under the influence of multivariate correlation of weather environment.Also it is used for the mining of spatial features of local waveforms and long time-dependent temporal features of multiscale components at the same time,as well as the combined integration of different types of features to realize ultra-short-term prediction of PV power generation.The results show that this method improves the prediction accuracy by more than 3%compared with other deep learning methods in the field of ultra-short-term prediction of photovoltaic power.This indicates that this method has higher prediction accuracy and stronger generalizability in the field of ultra-short-term prediction of photovoltaic power.
Author 陈臣鹏
毕贵红
赵鑫
骆钊
黄泽
谢旭
张梓睿
AuthorAffiliation 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212
AuthorAffiliation_xml – name: 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212
Author_FL BI Guihong
LUO Zhao
HUANG Ze
XIE Xu
ZHANG Zirui
ZHAO Xin
CHEN Chenpeng
Author_FL_xml – sequence: 1
  fullname: HUANG Ze
– sequence: 2
  fullname: BI Guihong
– sequence: 3
  fullname: XIE Xu
– sequence: 4
  fullname: ZHAO Xin
– sequence: 5
  fullname: CHEN Chenpeng
– sequence: 6
  fullname: ZHANG Zirui
– sequence: 7
  fullname: LUO Zhao
Author_xml – sequence: 1
  fullname: 黄泽
– sequence: 2
  fullname: 毕贵红
– sequence: 3
  fullname: 谢旭
– sequence: 4
  fullname: 赵鑫
– sequence: 5
  fullname: 陈臣鹏
– sequence: 6
  fullname: 张梓睿
– sequence: 7
  fullname: 骆钊
BookMark eNotjctKAzEUQLOoYK39ArduZ0xuXpOlFh-F-kC6L0kmkY6SVqP4Ay1ShboXYcC9S10UP6fT6l9Y0MXh7M7ZQLUwCA6hLYJTomRGd4rUhst-OoxDmwLFmeQ1VCdCsoQywtdRM8a-wZgSzkWm6giqcjafTY_32snZinMXT9zt8mX0_Tlelu-L17IaT-Zfz9VjuZw-_LyNFh9Pm2jN66vomv9uoO7Bfrd1lHROD9ut3U4SlRIJdcyC4c55yI3UAlvBdWaNJiqzwnlmbS6ZA2BKMW_Bci41J5pgA95oSRto-y97r4PX4aJXDO5uwmrYK_JrwMAwYCLoL0rjVPI
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.230875
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Ultra-short-term PV power prediction based on MBI-PBI-ResNet
EndPage 176
ExternalDocumentID jdq202402016
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s996-3e4c2b5eef2db7a60c65a8cba198c6ef4ccd74e224994fc2c557a51a10b2fba73
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords photovoltaic power
并联网络
光伏发电
功率预测
相似日聚类
power prediction
similar day clustering
parallel network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s996-3e4c2b5eef2db7a60c65a8cba198c6ef4ccd74e224994fc2c557a51a10b2fba73
PageCount 12
ParticipantIDs wanfang_journals_jdq202402016
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212
Publisher_xml – name: 昆明理工大学电力工程学院,云南 昆明 650500%华能澜沧江水电股份有限公司糯扎渡水电厂,云南 普洱 665000%中国长江电力股份有限公司乌东德水力发电厂,云南 昆明 651212
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4152477
Snippet 为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition,SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法.首先,使用快速傅里叶变换(fast fourier...
SourceID wanfang
SourceType Aggregation Database
StartPage 165
Title 基于MBI-PBI-ResNet的超短期光伏功率预测
URI https://d.wanfangdata.com.cn/periodical/jdq202402016
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1LaxQxeKjtxYsoKr4qRcypTJ1kJpnJcWZ3liq0iFTorcwjq1ZYq7u99NwiKtS7CAvePeqh-HP60H_h932T7qZuUdvDhuz3yvcImS8hD8-7z2EADGoT-qJUtR-ZIvFL-JL4MopLUfOyMgEeFF5aVotPo0ercnVq5p6za2lzUC5UW6eeKzlPVAEGccVTsmeI7EgoAKAO8YUSIgzlf8WY5ZLpDstSlkdYJvlS9tB_DL8npr9sBiyPmQZwxPKEZYolkiAdlrZZrphuYR1kADzRJKPFkgaSEioGkSyJWa5ZKkiOYhlgMzenJZkRwi1jhpAsZFlTyUgUEHSYpnaBJo0IkqB8hOQsjYkd9TzuBNgscNtmQV57jFEsBXGSDGvajtEDqRiTACZAtdHSmKXtExhJPJppztLMXfoQ40VP4gQV1XElJ1MDgoAAEEo2gzGN9uDWVJ3mjhExlCAnc4hBBXKuaNkggkbI2Aal5yc1mIdcV-LL2tJSoVKAQO-Qm3IMK1YEKQUVTv5X6A1w1Vg74AIaTs1mlh14sSeQUmBo0zfSFlU6GK8msikJBMomfABHOZNNSOo_fzMObG9EAJrPK4UvZ5Bx1Duwn0r0IGqnMd5Zx7Fp0tHnswmIwZSWbVQTChyZxY5NTiyBC-04g5V_hpAL7iy34xEdH_I86eYLUjjjonA-_rx59cTmkbx512giRcG1VspRqt7LFwsb_Y0KD2MksRxnZKN9suv1a-z3MKXj6oI3I2AqLJxlI5ti4-F15xuNdwqO_sP0TSk9XnIIYQbivoAheRhH0u6kwOxVaLz0EXd-j4y3l7Wh4g8m1abTjr1u0XvmJOYrl71LdkY9lzbD4xVvauv5VU8cDPf293ZPDodHn7Z_ft85Gn49_Dw82Hm3_-Pjwfvh0e7bX1-2D799uOatdPKV1qJvn4fx-3hyIjRRJUppTFfUZVyooFKySKqy4DqplOlGVVXHkYEpitZRtxKVlHEhecGDUnTLIg6ve9O9Vz1zw5sTopuoWteqiEJ8vk_jJdHGhCoMyjAM65verDVxzY7-_TU3NLf-gb_tXcR6s3J7x5sevNk0szCXGZR3KZi_ASt-2VI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMBI-PBI-ResNet%E7%9A%84%E8%B6%85%E7%9F%AD%E6%9C%9F%E5%85%89%E4%BC%8F%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%BB%84%E6%B3%BD&rft.au=%E6%AF%95%E8%B4%B5%E7%BA%A2&rft.au=%E8%B0%A2%E6%97%AD&rft.au=%E8%B5%B5%E9%91%AB&rft.date=2024&rft.pub=%E6%98%86%E6%98%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%8A%9B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500%25%E5%8D%8E%E8%83%BD%E6%BE%9C%E6%B2%A7%E6%B1%9F%E6%B0%B4%E7%94%B5%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E7%B3%AF%E6%89%8E%E6%B8%A1%E6%B0%B4%E7%94%B5%E5%8E%82%2C%E4%BA%91%E5%8D%97+%E6%99%AE%E6%B4%B1+665000%25%E4%B8%AD%E5%9B%BD%E9%95%BF%E6%B1%9F%E7%94%B5%E5%8A%9B%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E4%B9%8C%E4%B8%9C%E5%BE%B7%E6%B0%B4%E5%8A%9B%E5%8F%91%E7%94%B5%E5%8E%82%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+651212&rft.issn=1674-3415&rft.volume=52&rft.issue=2&rft.spage=165&rft.epage=176&rft_id=info:doi/10.19783%2Fj.cnki.pspc.230875&rft.externalDocID=jdq202402016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg