计及劣化状态和随机故障的光伏发电系统视情维修模型以及最优检修策略

针对现有光伏发电系统维修策略研究中通常仅考虑劣化状态导致维修决策不合理等问题,提出了一种计及劣化状态和随机故障的光伏发电系统视情维修模型及最优检修策略.首先,以离散状态下的Markov过程为基础,将随机故障对维修策略的影响引入到光伏发电系统视情维修建模中,建立光伏发电系统计及劣化状态和随机故障状态的视情维修模型,定期检测光伏发电系统的状态.当系统状态超过预防性维修阈值时进行不完全维修;出现随机故障时进行最小维修;达到故障状态时进行更换.然后,以光伏发电系统长期稳定运行的最小总成本率为目标,采用一种改进的黏菌优化算法求取光伏发电系统最佳检测周期和预防性维修阈值.最后,以某光伏发电系统为例,通过对...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 12; pp. 154 - 166
Main Authors 陈伟, 孙存育, 裴婷婷, 李明
Format Journal Article
LanguageChinese
Published 兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050 16.06.2024
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.231100

Cover

Abstract 针对现有光伏发电系统维修策略研究中通常仅考虑劣化状态导致维修决策不合理等问题,提出了一种计及劣化状态和随机故障的光伏发电系统视情维修模型及最优检修策略.首先,以离散状态下的Markov过程为基础,将随机故障对维修策略的影响引入到光伏发电系统视情维修建模中,建立光伏发电系统计及劣化状态和随机故障状态的视情维修模型,定期检测光伏发电系统的状态.当系统状态超过预防性维修阈值时进行不完全维修;出现随机故障时进行最小维修;达到故障状态时进行更换.然后,以光伏发电系统长期稳定运行的最小总成本率为目标,采用一种改进的黏菌优化算法求取光伏发电系统最佳检测周期和预防性维修阈值.最后,以某光伏发电系统为例,通过对模型参数的灵敏度分析和传统不考虑随机故障维修模型的对比研究,验证了所提模型及策略的有效性和可行性.
AbstractList 针对现有光伏发电系统维修策略研究中通常仅考虑劣化状态导致维修决策不合理等问题,提出了一种计及劣化状态和随机故障的光伏发电系统视情维修模型及最优检修策略.首先,以离散状态下的Markov过程为基础,将随机故障对维修策略的影响引入到光伏发电系统视情维修建模中,建立光伏发电系统计及劣化状态和随机故障状态的视情维修模型,定期检测光伏发电系统的状态.当系统状态超过预防性维修阈值时进行不完全维修;出现随机故障时进行最小维修;达到故障状态时进行更换.然后,以光伏发电系统长期稳定运行的最小总成本率为目标,采用一种改进的黏菌优化算法求取光伏发电系统最佳检测周期和预防性维修阈值.最后,以某光伏发电系统为例,通过对模型参数的灵敏度分析和传统不考虑随机故障维修模型的对比研究,验证了所提模型及策略的有效性和可行性.
Abstract_FL There are problems in existing PV power generation system maintenance strategy research,since it usually only considers the deterioration state and leads to unreasonable maintenance decisions.Thus this paper proposes a PV power generation system visual maintenance model and optimal overhaul strategy that takes into account the deterioration state and random faults.First,based on the Markov process in the discrete state,the influence of random faults on the maintenance strategy is introduced into the PV power generation system visual maintenance modeling.Then a visual maintenance model of the system taking into account the deterioration state and random fault state is established,the state of the system is detected periodically.Incomplete maintenance is carried out when the state of the system is more than the threshold value of the preventive maintenance;the minimum maintenance is carried out when there is a random fault;and replacement is carried out when it reaches the fault state.Then,an improved viscous bacteria optimization algorithm is used to find the optimal detection period and preventive maintenance threshold of the PV power generation system with the objective of the minimum total cost rate of the system for long-term stable operation.Finally,taking a PV power generation system as an example,the effectiveness and feasibility of the proposed model and strategy are verified through sensitivity analysis of the model parameters and a comparative study of the traditional maintenance model without considering the random faults.
Author 孙存育
裴婷婷
李明
陈伟
AuthorAffiliation 兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050
AuthorAffiliation_xml – name: 兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050
Author_FL SUN Cunyu
CHEN Wei
LI Ming
PEI Tingting
Author_FL_xml – sequence: 1
  fullname: CHEN Wei
– sequence: 2
  fullname: SUN Cunyu
– sequence: 3
  fullname: PEI Tingting
– sequence: 4
  fullname: LI Ming
Author_xml – sequence: 1
  fullname: 陈伟
– sequence: 2
  fullname: 孙存育
– sequence: 3
  fullname: 裴婷婷
– sequence: 4
  fullname: 李明
BookMark eNotjU1LAkEAQOdgkJm_oGvX3eZjZ3fmGNIXCF28237Mhlus1hJdjTLIhKVICZFCROqSlz4OrdCf2dnRf5FQpwfv8N4KyIX1UACwhqCOuMXIRqC74VFNb0QNV8cEIQhzII9My9CIgegyKEZRzYGQIEpNxvPgYDYZyrgt2yPZ6an2V9a8kPedeT_OBt9ZtzXvD1T_SrZu0mks4zv18KneE5U8z16us8uWSj7Sn0n2OpRPt2kyXnSyQTOdPmaj5sKrt57qjlfBkm8fR6L4zwKobG9VSrtaeX9nr7RZ1iLOqWYKZrrcE8L0OBbUsgVjruVDjH3HNhiFpi9My3VcwzF8mxKDYc4I8rCHqSVcSgpg_S97boe-HR5Wg_rZabgYVgPvBENsIAwRJb8V9XqZ
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.231100
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Condition-based maintenance model and optimal maintenance strategy of a photovoltaic power generation system considering deterioration state and random failure
EndPage 166
ExternalDocumentID jdq202412015
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s995-6e86c9dee6d92e57ae88c7f022fba48506fe67cbc4b4fa534829831d2d257ec53
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords condition-based maintenance
Markov process
Markov过程
视情维修
随机故障
预防性维修阈值
photovoltaic power generation system
random failure
preventive maintenance threshold
光伏发电系统
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s995-6e86c9dee6d92e57ae88c7f022fba48506fe67cbc4b4fa534829831d2d257ec53
PageCount 13
ParticipantIDs wanfang_journals_jdq202412015
PublicationCentury 2000
PublicationDate 2024-06-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050
Publisher_xml – name: 兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4440472
Snippet ...
SourceID wanfang
SourceType Aggregation Database
StartPage 154
Title 计及劣化状态和随机故障的光伏发电系统视情维修模型以及最优检修策略
URI https://d.wanfangdata.com.cn/periodical/jdq202412015
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5ivHgRRcVXJAf7FDbOq2e6j92bWYKgpwi5xZ2XL1ijiZecIhrBGFgUEyQEJYSgF3PxcXAD_pnsTvwXVtV0dgcS8AFhqK3urv7qq8x09dDdY1lXQymSLLHzWp76cc1PRVITnidrMJjnuPcxdml79I2bweQt__o0nx4a1tXdJfPxeLJw5L6S_4kq6CCuuEv2HyLbNwoKkCG-cIUIw_WvYswiwVTElMMizkSDCUWCYsojoc5kwKIQNRqEAJc1CKosXSyNJJMKG0KRrDOtSICG3BSBEppjHZ8Mwp9kkc90nVpRp9KhOqDkKGiPaU2CZrJBCAFA2btHlqlI-2SngfihSAnjhYyY0FSkmeIVvwgh4C97l4JaeQea0k7I1IRxGbxQvJp5V0ASRVIfhZZMyQlCCzSWIAUTBBKu4As2F8Dnwb8qUSVRZ6A1BiWcAMkDQSAdwmXaHVQR6IUmepVkOuwLgyoBIiohSMRSfVPj-riirNxISveWiZO2UQBzkniRNsWANCWt4FvpDABTQYWdANtKv1I5xPCYqJRclIw7RIrDVOOoyn3LRI9y4WY2vfR5EN7YYbhj9G0DuzJaBqFfgzSIV4dT7lYfG25lcHTK48JNnuWUX9s5NITju0gaw5PWg3vjs3OzyTjMQRzbHmQs_XWk99NHSLQDWSw_Zh13w7BcqmFeq5gUFDd3V8YwPHOv_xtMB4EcTMk9yNCrX4jgjhf63Kw0wOzOlXgoIq6M7ntvDjND4NcOw6bdgK282bpTSVynTlknzYxzVJWPj9PW0MLdM9bt_Z3Nbnu5u7zVXVkrlr_3Fp9236z8Wm_3Nn70Vpd-rW8U68-7Sy_3dtvd9uvi7bfiS6fofNj_-KL3bKnofN37udP7tNl9_2qvsw12ehuLe7vveluLoC8-rxWr22etqUY0VZ-smY-t1ObwkIYgE0Ei0ywLUulmPGxmQiRhDhl-Hjd9PNYyz4IwiRM_9vMmxyOxpPCc1E1hzM8S7p2zhlsPW9l5azSRYSxTP-ExrppoNmNuO2mWA9dNL0hd-4I1YgiZMc_SuZlqIC_-ofySdWJwd122hucfP8lGYGYwH1-h0P8G4tTQjA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%AE%A1%E5%8F%8A%E5%8A%A3%E5%8C%96%E7%8A%B6%E6%80%81%E5%92%8C%E9%9A%8F%E6%9C%BA%E6%95%85%E9%9A%9C%E7%9A%84%E5%85%89%E4%BC%8F%E5%8F%91%E7%94%B5%E7%B3%BB%E7%BB%9F%E8%A7%86%E6%83%85%E7%BB%B4%E4%BF%AE%E6%A8%A1%E5%9E%8B%E4%BB%A5%E5%8F%8A%E6%9C%80%E4%BC%98%E6%A3%80%E4%BF%AE%E7%AD%96%E7%95%A5&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%99%88%E4%BC%9F&rft.au=%E5%AD%99%E5%AD%98%E8%82%B2&rft.au=%E8%A3%B4%E5%A9%B7%E5%A9%B7&rft.au=%E6%9D%8E%E6%98%8E&rft.date=2024-06-16&rft.pub=%E5%85%B0%E5%B7%9E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E7%94%98%E8%82%83+%E5%85%B0%E5%B7%9E+730050&rft.issn=1674-3415&rft.volume=52&rft.issue=12&rft.spage=154&rft.epage=166&rft_id=info:doi/10.19783%2Fj.cnki.pspc.231100&rft.externalDocID=jdq202412015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg