基于多元自适应回归样条的光伏并网系统日输出功率预测
为了更加准确、灵活地预测光伏发电系统的输出功率,提出了基于多元自适应回归样条(MARS)的光伏系统输出功率预测方法.通过对该算法的原理进行分析,确定了模型分析流程,并介绍了数据来源.其次,以气温、日照时间等因素作为自变量,对MARS模型进行了分析研究,确定了光伏功率预测时的仿真模型.最后,将提出的预测方法与现有的预测方法进行了对比.通过训练数据以及测试数据对比分析各种方法的RMSE、MAD和MAPE,并根据历史数据预测光伏日输出功率.通过对比证实了MARS模型比其他模型更能准确预测光伏系统的输出功率....
Saved in:
Published in | 电力系统保护与控制 Vol. 49; no. 5; pp. 124 - 131 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
国网上海青浦供电公司,上海201700%上海置信电气非晶有限公司,上海201700%上海工程技术大学,上海201620
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
DOI | 10.19783/j.cnki.pspc.200503 |
Cover
Abstract | 为了更加准确、灵活地预测光伏发电系统的输出功率,提出了基于多元自适应回归样条(MARS)的光伏系统输出功率预测方法.通过对该算法的原理进行分析,确定了模型分析流程,并介绍了数据来源.其次,以气温、日照时间等因素作为自变量,对MARS模型进行了分析研究,确定了光伏功率预测时的仿真模型.最后,将提出的预测方法与现有的预测方法进行了对比.通过训练数据以及测试数据对比分析各种方法的RMSE、MAD和MAPE,并根据历史数据预测光伏日输出功率.通过对比证实了MARS模型比其他模型更能准确预测光伏系统的输出功率. |
---|---|
AbstractList | 为了更加准确、灵活地预测光伏发电系统的输出功率,提出了基于多元自适应回归样条(MARS)的光伏系统输出功率预测方法.通过对该算法的原理进行分析,确定了模型分析流程,并介绍了数据来源.其次,以气温、日照时间等因素作为自变量,对MARS模型进行了分析研究,确定了光伏功率预测时的仿真模型.最后,将提出的预测方法与现有的预测方法进行了对比.通过训练数据以及测试数据对比分析各种方法的RMSE、MAD和MAPE,并根据历史数据预测光伏日输出功率.通过对比证实了MARS模型比其他模型更能准确预测光伏系统的输出功率. |
Author | 黄一楠 周志峰 闫贻鹏 陆培钧 袁靖 鲍长庚 |
AuthorAffiliation | 国网上海青浦供电公司,上海201700%上海置信电气非晶有限公司,上海201700%上海工程技术大学,上海201620 |
AuthorAffiliation_xml | – name: 国网上海青浦供电公司,上海201700%上海置信电气非晶有限公司,上海201700%上海工程技术大学,上海201620 |
Author_FL | BAO Changgeng ZHOU Zhifeng YUAN Jing HUANG Yinan LU Peijun YAN Yipeng |
Author_FL_xml | – sequence: 1 fullname: BAO Changgeng – sequence: 2 fullname: YAN Yipeng – sequence: 3 fullname: HUANG Yinan – sequence: 4 fullname: YUAN Jing – sequence: 5 fullname: LU Peijun – sequence: 6 fullname: ZHOU Zhifeng |
Author_xml | – sequence: 1 fullname: 鲍长庚 – sequence: 2 fullname: 闫贻鹏 – sequence: 3 fullname: 黄一楠 – sequence: 4 fullname: 袁靖 – sequence: 5 fullname: 陆培钧 – sequence: 6 fullname: 周志峰 |
BookMark | eNotjz9Lw0AcQG-oYK39BK6uiXf3yyW5UYr_sODSvaSXizTKtRrEVbQlaKHiHxAqWhVdXEXF1Pppekn7LSzo9Lb3eHMopxpKIrRAsEm448JSaAq1UzebUVOYFGOGIYfyxHYsAyzCZlExiuo1jIEwZrs8jzZ1PxklXf3c0-2Tcfw6OTrWybW-vdfDy_ThM717zHot3T4dfZ_rr49seJG9DbJBP715Gf9c6TjRZ_2sG0-eWul7Zx7NBN5uJIv_LKDK6kqltG6Ut9Y2SstlI-LcMgQHTEVAwfeF9FkgnRqnPpFgU0oFAPY4ty0nsANbEuFywrgPnHFwLCGlQ6CAFv-0h54KPLVdDRsH-2oarIb-HsWUTK-JBb_d9GuT |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.19783/j.cnki.pspc.200503 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines |
EndPage | 131 |
ExternalDocumentID | jdq202105014 |
GrantInformation_xml | – fundername: 国家重点研发计划项目资助 funderid: (2018YFB2100103) |
GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-s994-c9302cf23ddced5fe7b92d1e36222c330a99647f6f6e1c89159d3959374cee713 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 04:03:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 输出功率 多元自适应回归样条 预测模型 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s994-c9302cf23ddced5fe7b92d1e36222c330a99647f6f6e1c89159d3959374cee713 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_jdq202105014 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitle_FL | Power System Protection and Control |
PublicationYear | 2021 |
Publisher | 国网上海青浦供电公司,上海201700%上海置信电气非晶有限公司,上海201700%上海工程技术大学,上海201620 |
Publisher_xml | – name: 国网上海青浦供电公司,上海201700%上海置信电气非晶有限公司,上海201700%上海工程技术大学,上海201620 |
SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
Score | 2.31181 |
Snippet | ... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 124 |
Title | 基于多元自适应回归样条的光伏并网系统日输出功率预测 |
URI | https://d.wanfangdata.com.cn/periodical/jdq202105014 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LahRBcIjx4kUUFV-RHOzjxpmenkcfu3dnCYqeIuQWdl6-YI0mueQkmhBUiPgAIaJRURCvouLG-DWZ3eQvrKrp7I4kEhVhaXqrq6uqq3qmq2a6ayzrbCZykYokqzmtJK6JXLo1GbZELQ7xnVsG3Xw8nHzxkj9-WZyf9CaHhj9Udi3NzcZjyfyu50r-xaoAA7viKdm_sGyfKACgDvaFEiwM5R_ZmEUek02mFYsElmGEECWYVFgJ4eeyKGQQ8CuASNzWEHJsAmQpqLtmknrpBpPQ5DNlMx1gRTaYclgUILVQbBOUxKvOwib1kkz7iIPdCVm7TGuqaJQN6QB3D8XQEZMu0QlIZqgowglQcgCChIoTL59paNVV15kkEQg3HfVu7AChiZIDBcABVSAkJM34WKqAuoMw_UeSyFYD2wZWpIcEjIZUFQWHoWkYglhKHHzY_IWKJuFLjjYpE8xhD1BCGp9D5EBhfvWZC69sOqOrxJgHNDvQb0laGQXpYJsSNxDlE05ktDPQFzTVqdJECry-kxTHHEc2495uXEgAFRn9mmlREgccmyZTKQkpWpbTAip1mjESIdL-H5JQifMJSmjSxtKluoGdapproLS0aqBOfsPF53ZlUfYDUQNvy6uu2mWiW3N38ipLsFOeyTfenFP6GDscBXziSZ5C0r5xbWx6ZprSmXq2O_CL-rtVr6e3cBLY-Ap-n7WfB0G5IcQ8vDGOLh4hr6yUmNmv_x-CKN-Xg8DfhTig-h0Kz3ED4Zn9DOhDcompF3H_dX_wJmUaCn5up9h05rCdt9pXKu7xxCHroIlrR1V5kzpsDc1fPWJdKFY7G53l4t1KsXhvc-nj1p27RedZ8eJVsf6k-_pr9-Wb3spCsXh_4_uj4tuX3vrj3qe13tpq9_n7zR9Pi6VO8WC1t7y09Xah-_nhUWuiGU3Ux2vm6y21GUw3nkjX5knO3TRNstTLsyCWPHUycJg5T1zXbkk8BJ_7uZ85SSghrEpdzJIewMqRBY57zBpu32xnx61RDArBz4hTkYLe8lac-jL2uEjtFgSoMjlhjZixT5mb88xU1WYn92g_ZR0YXOSnreHZ23PZCIQas_EZsvJPYifXcw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E5%85%83%E8%87%AA%E9%80%82%E5%BA%94%E5%9B%9E%E5%BD%92%E6%A0%B7%E6%9D%A1%E7%9A%84%E5%85%89%E4%BC%8F%E5%B9%B6%E7%BD%91%E7%B3%BB%E7%BB%9F%E6%97%A5%E8%BE%93%E5%87%BA%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%B2%8D%E9%95%BF%E5%BA%9A&rft.au=%E9%97%AB%E8%B4%BB%E9%B9%8F&rft.au=%E9%BB%84%E4%B8%80%E6%A5%A0&rft.au=%E8%A2%81%E9%9D%96&rft.date=2021-03-01&rft.pub=%E5%9B%BD%E7%BD%91%E4%B8%8A%E6%B5%B7%E9%9D%92%E6%B5%A6%E4%BE%9B%E7%94%B5%E5%85%AC%E5%8F%B8%2C%E4%B8%8A%E6%B5%B7201700%25%E4%B8%8A%E6%B5%B7%E7%BD%AE%E4%BF%A1%E7%94%B5%E6%B0%94%E9%9D%9E%E6%99%B6%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E4%B8%8A%E6%B5%B7201700%25%E4%B8%8A%E6%B5%B7%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6%2C%E4%B8%8A%E6%B5%B7201620&rft.issn=1674-3415&rft.volume=49&rft.issue=5&rft.spage=124&rft.epage=131&rft_id=info:doi/10.19783%2Fj.cnki.pspc.200503&rft.externalDocID=jdq202105014 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |