基于粗糙集-混沌时间序列Elman神经网络的短期用电量预测

Elman神经网络由于其具有无限逼近和适应时变特性的能力被广泛用于动态数据预测.短期的用电量存在多种不确定影响因素, 为了将所有影响因素考虑其中, 引入混沌时间序列的重构相空间技术.由于神经网络在非线性函数中对于峰值预测偏差较大, 粗糙集理论可以对其做出修正.因此, 引入混沌时间序列理论和粗糙集理论改进Elman神经网络并进行建模.模型应用嵌入维度和延迟时间重构相空间恢复原来系统的动力学形态, 将处理好的数据代入Elman神经网络进行用电量预测.最后引入粗糙集修正误差较大的峰值点, 提高预测精度.收集了Heriot-Watt大学某宿舍楼30天的用电量数据, 以5 min为计数频率共8 640个...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 47; no. 3; pp. 23 - 30
Main Authors 吴佳懋, 李艳, 符一健
Format Journal Article
LanguageChinese
Published 海南大学,海南 海口,570228%赫瑞·瓦特大学,爱丁堡 EH14 4AS 01.02.2019
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.7667/PSPC180274

Cover

Abstract Elman神经网络由于其具有无限逼近和适应时变特性的能力被广泛用于动态数据预测.短期的用电量存在多种不确定影响因素, 为了将所有影响因素考虑其中, 引入混沌时间序列的重构相空间技术.由于神经网络在非线性函数中对于峰值预测偏差较大, 粗糙集理论可以对其做出修正.因此, 引入混沌时间序列理论和粗糙集理论改进Elman神经网络并进行建模.模型应用嵌入维度和延迟时间重构相空间恢复原来系统的动力学形态, 将处理好的数据代入Elman神经网络进行用电量预测.最后引入粗糙集修正误差较大的峰值点, 提高预测精度.收集了Heriot-Watt大学某宿舍楼30天的用电量数据, 以5 min为计数频率共8 640个计数点作为数据集进行预测仿真.预测结果与Elman神经网络和混沌时间序列Elman神经网络进行对比, 验证了该模型在短时间预测的有效性.
AbstractList Elman神经网络由于其具有无限逼近和适应时变特性的能力被广泛用于动态数据预测.短期的用电量存在多种不确定影响因素, 为了将所有影响因素考虑其中, 引入混沌时间序列的重构相空间技术.由于神经网络在非线性函数中对于峰值预测偏差较大, 粗糙集理论可以对其做出修正.因此, 引入混沌时间序列理论和粗糙集理论改进Elman神经网络并进行建模.模型应用嵌入维度和延迟时间重构相空间恢复原来系统的动力学形态, 将处理好的数据代入Elman神经网络进行用电量预测.最后引入粗糙集修正误差较大的峰值点, 提高预测精度.收集了Heriot-Watt大学某宿舍楼30天的用电量数据, 以5 min为计数频率共8 640个计数点作为数据集进行预测仿真.预测结果与Elman神经网络和混沌时间序列Elman神经网络进行对比, 验证了该模型在短时间预测的有效性.
Abstract_FL Elman neural network is widely used for dynamic data prediction because of its ability to approximate and adapting to time-varying characteristics. There are many uncertain factors in the short-term electricity consumption. In order to take all the factors into account, this paper introduces the reconstruction phase space technology of chaotic time series. Due to the large deviation from the neural network of the peak prediction in nonlinear functions, it can be modified by rough set theory. Therefore, the chaotic time series theory and rough set theory are introduced to improve the Elman neural network. The model applies embedded dimension and delay time to reconstruct the phase space to restore the original system's dynamic morphology. The processed data is brought into the Elman neural network to predict the electricity consumption. Finally, the peak point corrected by the rough set is introduced to improve the prediction accuracy. This paper collects the data from a dormitory building in Heriot-Watt university of Edinburgh. It uses thirty days electricity data with 8 640 points as the data set to do predict simulation. The prediction results are compared with the Elman neural network and chaotic time series Elman neural network, and the validity of the model are verified in a short-time prediction.
Author 李艳
吴佳懋
符一健
AuthorAffiliation 海南大学,海南 海口,570228%赫瑞·瓦特大学,爱丁堡 EH14 4AS
AuthorAffiliation_xml – name: 海南大学,海南 海口,570228%赫瑞·瓦特大学,爱丁堡 EH14 4AS
Author_FL WU Jiamao
LI Yan
FU Yijian
Author_FL_xml – sequence: 1
  fullname: WU Jiamao
– sequence: 2
  fullname: LI Yan
– sequence: 3
  fullname: FU Yijian
Author_xml – sequence: 1
  fullname: 吴佳懋
– sequence: 2
  fullname: 李艳
– sequence: 3
  fullname: 符一健
BookMark eNotzUtKw0AAgOFZVLDWbjyD2-i8H0sp9YEFC3ZfkkwiljpFg3iBooJiKBSCWgwIghs31VpI8TYmQ26hoKt_9_0roGIGJgBgDcENwbnYbB-2G0hCLGgFVBEX1CEUsWVQj6JjD0KCGONSVcF-nmbf2Z2dJvb9vny8dIr5vJjeFslnmXzkWZxfJ83-iWvsy5NdxPZrZBcT-zC06VsxSe341Y5n5VVcPg-L2c0qWArdfhTU_1sDne1mp7HrtA529hpbLSdSijoCM08oz6eCCSkVVxpL4guqiNKB4iwMQxF4CvrMh1hr6ilNoSTMJRIjjFxSA-t_7IVrQtccdXuD8zPzO-z29CmGSEECISU_9JJmEw
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7667/PSPC180274
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Short-term power consumption prediction based on rough set chaotic time series Elman neural network
EndPage 30
ExternalDocumentID jdq201903004
GrantInformation_xml – fundername: 国家自然科学基金项目资助
  funderid: (71572126)
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s994-725b79bc475788969d283c74939de965fff7eb90c5c02dd4b9d40835a382121a3
ISSN 1674-3415
IngestDate Thu May 29 04:03:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 混沌时间序列
用电量预测
prediction of electricity consumption
粗糙集
rough set
Elman神经网络
chaotic time series
Elman neural network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s994-725b79bc475788969d283c74939de965fff7eb90c5c02dd4b9d40835a382121a3
PageCount 8
ParticipantIDs wanfang_journals_jdq201903004
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2019
Publisher 海南大学,海南 海口,570228%赫瑞·瓦特大学,爱丁堡 EH14 4AS
Publisher_xml – name: 海南大学,海南 海口,570228%赫瑞·瓦特大学,爱丁堡 EH14 4AS
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.2578983
Snippet Elman神经网络由于其具有无限逼近和适应时变特性的能力被广泛用于动态数据预测.短期的用电量存在多种不确定影响因素, 为了将所有影响因素考虑其中, 引入混沌时间序列的重构相空间技术.由于神经网络在非线性函数中对于峰值预测偏差较大, 粗糙集理论可以对其做出修正.因此,...
SourceID wanfang
SourceType Aggregation Database
StartPage 23
Title 基于粗糙集-混沌时间序列Elman神经网络的短期用电量预测
URI https://d.wanfangdata.com.cn/periodical/jdq201903004
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAMNT64osoKn5V-uA-lWg-9vMxSXMURSm0Qt_KJbkoIle07UufiwqKRSgcarEgCL74Uq2FK775U-yF-xfOTHJ3aVX8gGOZzE5mdmbY29nN7qxlXYW5jUpTndtJLhOYoOTahqioaQvMQqmdLNMpThRv3ZYzd_iNBbEwduxbbdfS6kpyLV375bmS__Eq4MCveEr2Hzw7ZAoIgMG_UIKHofwrH7NYMNNgYcBijqWOWaxY6DGjCPCZMSw2zIRMS5vFkoUKfwh4TEcIAGkoiQgAjhyRUQMBrQEZP8A1UuAWgKySf0j1AEwz41YYEyFg4FVOQIMF08Q-QhgxnAW6AkKBArUiPoYFHr0lEa_Derhco4eqABUp9QrDgdwG6d5ghsQBTcAJo8kaEstAVdqEw2VIspxDCnPUA1girRrIJxKJTJEL8DJAMqoBa0QskANBDvF3wUT1RRQ8t3VoQ0qlYlg2Z5q8JLC9ZQPBYMDSi34mmzqMAtv6QCcUZhVinsAGQm1ANgGPgJsij4jh0ad2KtLA_EaeIuO4A3VcqnVY4E7FMy6f4sFcbeySitsQlIj64FamM606sV8fqfxazFN-Gjs6miop8Xv-7NxshHkCy9uUjmQnv589RHs6PiXlPe4pVW6WqBY2qiAQj1fXRhHMejd8hgmGlGY0KfYhRq7f0SBcX3FRfevH-MozmJYQ9yYPNS7zDmN7r49aS8fw2nmzfbcWMc6fsk5WU73JoOy3p62xtXtnrJsH293v3RfFTqf49Kr_5rHd29vr7Tzvdb70O58PuhsHTzvU44r3b4v9jeLry2J_q3i9Xmx_7G1tF5sfis3d_pON_rv13u6zs9Z8I56PZuzqQhN7GTNwK08kyiQpxzsktJEmg9g-Vdz4JmsZKfI8V63EOKlIHS_LeGIyjjOkpq8hwHSb_jlrvL3Ubp23JnNHZtLNtJemOdciB7NxcIHTcls58DcXrIlK98Xq_2p5se6qi3-ov2SdGHWTy9b4yqPV1gRE3yvJFXLuD0TXoQ4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%B2%97%E7%B3%99%E9%9B%86-%E6%B7%B7%E6%B2%8C%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97Elman%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E7%9F%AD%E6%9C%9F%E7%94%A8%E7%94%B5%E9%87%8F%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%90%B4%E4%BD%B3%E6%87%8B&rft.au=%E6%9D%8E%E8%89%B3&rft.au=%E7%AC%A6%E4%B8%80%E5%81%A5&rft.date=2019-02-01&rft.pub=%E6%B5%B7%E5%8D%97%E5%A4%A7%E5%AD%A6%2C%E6%B5%B7%E5%8D%97+%E6%B5%B7%E5%8F%A3%2C570228%25%E8%B5%AB%E7%91%9E%C2%B7%E7%93%A6%E7%89%B9%E5%A4%A7%E5%AD%A6%2C%E7%88%B1%E4%B8%81%E5%A0%A1+EH14+4AS&rft.issn=1674-3415&rft.volume=47&rft.issue=3&rft.spage=23&rft.epage=30&rft_id=info:doi/10.7667%2FPSPC180274&rft.externalDocID=jdq201903004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg