基于混合分解多尺度时频图和Res-GRU-AT的电能质量复合扰动识别

能源互联网背景下的电能质量问题越来越凸显,针对传统电能质量扰动(power quality disturbances,PQDs)识别过程中存在的信号特征提取复杂、算法识别能力不足和复合扰动区分困难等问题,提出了一种混合分量多尺度时频图和残差神经网络(residual neural network,ResNet)、门控循环单元(gated recurrent units,GRU)网络与注意力机制(attention,AT)组合的电能质量复合扰动识别新方法—Res-GRU-AT.首先利用奇异谱分解(singular spectrum decomposition,SSD)和逐次变分模态分解(succ...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 4; pp. 12 - 25
Main Authors 毕贵红, 鲍童语, 陈臣鹏, 赵四洪, 陈仕龙, 张梓睿
Format Journal Article
LanguageChinese
Published 昆明理工大学电力工程学院,云南 昆明 650500 16.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 能源互联网背景下的电能质量问题越来越凸显,针对传统电能质量扰动(power quality disturbances,PQDs)识别过程中存在的信号特征提取复杂、算法识别能力不足和复合扰动区分困难等问题,提出了一种混合分量多尺度时频图和残差神经网络(residual neural network,ResNet)、门控循环单元(gated recurrent units,GRU)网络与注意力机制(attention,AT)组合的电能质量复合扰动识别新方法—Res-GRU-AT.首先利用奇异谱分解(singular spectrum decomposition,SSD)和逐次变分模态分解(successive variational mode decomposition,SVMD)对PQDs信号分别进行多尺度分解得到混合分量,再对混合分量进行希尔伯特黄变换(Hilbert-Huang transform,HHT),分析得到多尺度时频图.其次,利用Res-GRU-AT模型对多尺度时频图进行深层次特征提取、强化和识别.Res-GRU-AT模型能够利用ResNet的二维图像空间特征提取能力和GRU的时序特征提取能力进行特征融合,再通过AT进行特征加权强化,提高了PQDs的识别能力.不同方案的仿真结果表明,所提方法特征提取能力强且抗噪性能好,对复合扰动识别率高.
AbstractList 能源互联网背景下的电能质量问题越来越凸显,针对传统电能质量扰动(power quality disturbances,PQDs)识别过程中存在的信号特征提取复杂、算法识别能力不足和复合扰动区分困难等问题,提出了一种混合分量多尺度时频图和残差神经网络(residual neural network,ResNet)、门控循环单元(gated recurrent units,GRU)网络与注意力机制(attention,AT)组合的电能质量复合扰动识别新方法—Res-GRU-AT.首先利用奇异谱分解(singular spectrum decomposition,SSD)和逐次变分模态分解(successive variational mode decomposition,SVMD)对PQDs信号分别进行多尺度分解得到混合分量,再对混合分量进行希尔伯特黄变换(Hilbert-Huang transform,HHT),分析得到多尺度时频图.其次,利用Res-GRU-AT模型对多尺度时频图进行深层次特征提取、强化和识别.Res-GRU-AT模型能够利用ResNet的二维图像空间特征提取能力和GRU的时序特征提取能力进行特征融合,再通过AT进行特征加权强化,提高了PQDs的识别能力.不同方案的仿真结果表明,所提方法特征提取能力强且抗噪性能好,对复合扰动识别率高.
Abstract_FL The power quality problem in the context of the energy internet is becoming more and more prominent.However,there are several problems in the traditional power quality disturbance(PQD)identification process,such as the signal feature extraction is complex,the algorithm recognition ability is insufficient,and it is difficult to differentiate composite disturbance,etc.Thus a new method—Res-GRU-AT,combining hybrid component multi-scale time-frequency diagram,residual neural network(ResNet),gated recurrent units(GRU)network and attention(AT)mechanism,is proposed for power quality composite disturbance identification.First,the PQDs signals are decomposed at multiple scales using singular spectrum decomposition(SSD)and successive variational modal decomposition(SVMD)respectively to obtain the hybrid components.Then the hybrid components are analyzed by Hilbert-Huang transform(HHT)to obtain the multi-scale time-frequency diagram.Secondly,multi-scale time-frequency diagrams are deeply extracted,strengthened,and recognized using the Res-GRU-AT model.The Res-GRU-AT model can perform feature fusion by using the spatial feature extraction capability for 2D images of ResNet and the temporal feature extraction capability of GRU.Then the feature-weighted enhancement is done by AT to improve the recognition capability of PQDs.Simulation results of different schemes show that the proposed method has strong feature extraction capability,good noise immunity,and high recognition rate of composite perturbation.
Author 陈臣鹏
赵四洪
陈仕龙
毕贵红
鲍童语
张梓睿
AuthorAffiliation 昆明理工大学电力工程学院,云南 昆明 650500
AuthorAffiliation_xml – name: 昆明理工大学电力工程学院,云南 昆明 650500
Author_FL BI Guihong
CHEN Chenpeng
BAO Tongyu
CHEN Shilong
ZHANG Zirui
ZHAO Sihong
Author_FL_xml – sequence: 1
  fullname: BI Guihong
– sequence: 2
  fullname: BAO Tongyu
– sequence: 3
  fullname: CHEN Chenpeng
– sequence: 4
  fullname: ZHAO Sihong
– sequence: 5
  fullname: CHEN Shilong
– sequence: 6
  fullname: ZHANG Zirui
Author_xml – sequence: 1
  fullname: 毕贵红
– sequence: 2
  fullname: 鲍童语
– sequence: 3
  fullname: 陈臣鹏
– sequence: 4
  fullname: 赵四洪
– sequence: 5
  fullname: 陈仕龙
– sequence: 6
  fullname: 张梓睿
BookMark eNotj8tKw0AYhWdRwVr7BG7dJs4_M8lklqVoFQpCiesyk4u0SloN4gMotUq9Igh1IWjRggu7UAsBfRqnTd_CgK4OZ_Gdj7OAclErChBaAmyC4A5daZpetNMw23HbMwnFhEEO5cHmzKAMrHlUjOOGwpiCZdmOyKOafkh-kovJeKyvurrbSV-e9KCvR4lOnid3n7PHa33_rW96tSA2KrUto-RO-8fT24_06Ct9H85OLvXgPCMnpyN9NkzfOrr7uojmQrkbB8X_LCB3bdUtrxvVzcpGuVQ1YiGIEQpuSwaBEl5oK48TX9nSsii2MTgKWMilT7LiWIBBYR7wgHGBffA96YNitICW_2YPZRTKaLvebB3sR5mw3vT3SPYcM4wJ_QXBNmx6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.230241
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Composite PQDs identification based on a hybrid decomposition multi-scale time-frequency map and Res-GRU-AT
EndPage 25
ExternalDocumentID jdq202404002
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s992-f976a41eb9cf6bc72db6a55306018b14f7ad206085101b07e7e4790d1dcad1b43
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 混合模式分解
deep learning
电能质量
故障识别
时频分析
power quality
深度学习
time and frequency analysis,hybrid decomposition
fault identification
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s992-f976a41eb9cf6bc72db6a55306018b14f7ad206085101b07e7e4790d1dcad1b43
PageCount 14
ParticipantIDs wanfang_journals_jdq202404002
PublicationCentury 2000
PublicationDate 2024-02-16
PublicationDateYYYYMMDD 2024-02-16
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 昆明理工大学电力工程学院,云南 昆明 650500
Publisher_xml – name: 昆明理工大学电力工程学院,云南 昆明 650500
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4330957
Snippet 能源互联网背景下的电能质量问题越来越凸显,针对传统电能质量扰动(power quality disturbances,PQDs)识别过程中存在的信号特征提取复杂、算法识别能力不足和复合扰动区分困难等问题,提出了一种混合分量多尺度时频图和残差神经网络(residual neural...
SourceID wanfang
SourceType Aggregation Database
StartPage 12
Title 基于混合分解多尺度时频图和Res-GRU-AT的电能质量复合扰动识别
URI https://d.wanfangdata.com.cn/periodical/jdq202404002
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9qvXgRRcWvSg_mVKbOZDOT5JjpzloEPZQt9Fbm0y9Yq9teelVqFb8RhHoQtGjBgz2ohQX9a5zt9r_wvUzYDVbwA5bwNpPk_d57m30vIS_jOOcz8OoNCFRdPy-FyxLB3KQIGm5RlsJLwUdQfary8pVwdp5dWggWxg70rVNLK8vpdLb627yS_7Eq1IFdMUv2Hyw7HBQqgAb7QgkWhvKvbEzigMgWiRSJGZYiJnFIIo4ffOQRIZCAUoQkFkRxohpYoxiRConI090DLFWI3SV0B0ISRYn09TgRiWJNUCJm5oque3Fu3lVtEnMcRTBNAIIAeYgGiZpIRIwogQMJTkTLcBVNC1lIhEQECFHpxgCxpbFq0CqyY2eLi24PsKAmAnY1EaEuUBEtIpt6cIUcsUYY1UCpuBk8Gu5J4hNgKwODGjlwrRA6agJAqUYPKoyICgzW0XWW2ERKLZdAkVHR0AlqWqMmAgevJQD4KEGo9aTs3RfK8MB2nRyq54s2S23Dmoi1LjyjKbC2Cox-a_FUUxtzv76GjTmqW0RWY40ebE5nzK-pNj6ILPnUfgRTEHQHnmc5tZAzF6KVwPZ6AbVmN7NcmDnVXgdDdVL6PjeL-4Xaz2adm9enl7pLGSYU0PoKs1_uL7-R30bFobOAUOkgheUctbY-TJiICdiWn8F78YbfYQkShnK0bG5AFG2_xSHwG5wF5jQARmBU4sWFeHp5KLq5cAyBX9gPW2fsdcqkc9UKLttHnMNmVTip6il-1BlbvXbMmave9H70nvR3dqpn69X62uDDu2pzo9ruVb33_Vdf994-r15_r148Gk3I3Y17uy-_DO5-G3ze2rv_tNp8DD37D7arh1uDT2vV-sfjTrsVt2dmXfMKFLeLx8JLWCwkzC9SmZVhmnGap2GCL_oKPV-kPit5klP4ItCzph4veMG49HI_z5LcT1njhDPeudUpTjqTnmABK2iSFzxjzOMp92jJU5ZmEJHmQpxyJowKFs0_XHfRNt3pPzw_4xwazY-zzvjynZViAuL15fScNvZPjWawaw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B7%E5%90%88%E5%88%86%E8%A7%A3%E5%A4%9A%E5%B0%BA%E5%BA%A6%E6%97%B6%E9%A2%91%E5%9B%BE%E5%92%8CRes-GRU-AT%E7%9A%84%E7%94%B5%E8%83%BD%E8%B4%A8%E9%87%8F%E5%A4%8D%E5%90%88%E6%89%B0%E5%8A%A8%E8%AF%86%E5%88%AB&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E6%AF%95%E8%B4%B5%E7%BA%A2&rft.au=%E9%B2%8D%E7%AB%A5%E8%AF%AD&rft.au=%E9%99%88%E8%87%A3%E9%B9%8F&rft.au=%E8%B5%B5%E5%9B%9B%E6%B4%AA&rft.date=2024-02-16&rft.pub=%E6%98%86%E6%98%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%8A%9B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500&rft.issn=1674-3415&rft.volume=52&rft.issue=4&rft.spage=12&rft.epage=25&rft_id=info:doi/10.19783%2Fj.cnki.pspc.230241&rft.externalDocID=jdq202404002
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg