基于CUDA的航空γ能谱数据小波降噪并行加速算法

TL84; 航空γ能谱数据体量巨大,使用中央处理器(Central Processing Unit,CPU)进行数据后处理时计算效率低.提出了一种基于通用并行计算架构CUDA(Compute Unified Device Architecture)的图形处理器(Graphics Processing Unit,GPU)并行方案,对航空γ能谱数据小波降噪处理过程进行并行加速优化.首先测试不同block尺寸对计算时间的影响,寻找处理航空γ能谱数据的最佳block尺寸;其次分别使用GPU计算不同数据体量和同一数据体量下不同小波基函数相较于CPU处理航空γ能谱数据的加速比;最后通过对实测航空γ能谱数据...

Full description

Saved in:
Bibliographic Details
Published in核技术 Vol. 47; no. 4; pp. 21 - 31
Main Authors 熊超, 王欣, 王鑫杰, 吴和喜
Format Journal Article
LanguageChinese
Published 东华理工大学 核科学与工程学院 南昌 330013%苏州大学 医学部放射医学与防护学院 苏州 215123 01.04.2024
Subjects
Online AccessGet full text
ISSN0253-3219
DOI10.11889/j.0253-3219.2024.hjs.47.040201

Cover

Abstract TL84; 航空γ能谱数据体量巨大,使用中央处理器(Central Processing Unit,CPU)进行数据后处理时计算效率低.提出了一种基于通用并行计算架构CUDA(Compute Unified Device Architecture)的图形处理器(Graphics Processing Unit,GPU)并行方案,对航空γ能谱数据小波降噪处理过程进行并行加速优化.首先测试不同block尺寸对计算时间的影响,寻找处理航空γ能谱数据的最佳block尺寸;其次分别使用GPU计算不同数据体量和同一数据体量下不同小波基函数相较于CPU处理航空γ能谱数据的加速比;最后通过对实测航空γ能谱数据添加白噪声,计算降噪后数据信噪比,优选出适用于GPU并行加速计算的阈值降噪方法.计算结果表明:航空γ能谱数据降噪最佳block二维尺寸在64×64到128×128之间;数据降噪总时间加速比达100倍以上的小波基函数占80%,加速比达90倍以上的小波基函数占91%,其中coif5小波基函数可达353倍,阈值降噪函数加速比可接近570倍.不同降噪函数处理航空γ能谱数据的结果表明,所有函数在低信噪比条件下降噪效果不足,而在高信噪比下则会出现过度降噪,采用硬阈值的coif5、软阈值的coif1和改进阈值的bior3.7小波基函数可得到显著的降噪效果.
AbstractList TL84; 航空γ能谱数据体量巨大,使用中央处理器(Central Processing Unit,CPU)进行数据后处理时计算效率低.提出了一种基于通用并行计算架构CUDA(Compute Unified Device Architecture)的图形处理器(Graphics Processing Unit,GPU)并行方案,对航空γ能谱数据小波降噪处理过程进行并行加速优化.首先测试不同block尺寸对计算时间的影响,寻找处理航空γ能谱数据的最佳block尺寸;其次分别使用GPU计算不同数据体量和同一数据体量下不同小波基函数相较于CPU处理航空γ能谱数据的加速比;最后通过对实测航空γ能谱数据添加白噪声,计算降噪后数据信噪比,优选出适用于GPU并行加速计算的阈值降噪方法.计算结果表明:航空γ能谱数据降噪最佳block二维尺寸在64×64到128×128之间;数据降噪总时间加速比达100倍以上的小波基函数占80%,加速比达90倍以上的小波基函数占91%,其中coif5小波基函数可达353倍,阈值降噪函数加速比可接近570倍.不同降噪函数处理航空γ能谱数据的结果表明,所有函数在低信噪比条件下降噪效果不足,而在高信噪比下则会出现过度降噪,采用硬阈值的coif5、软阈值的coif1和改进阈值的bior3.7小波基函数可得到显著的降噪效果.
Abstract_FL [Background]The volume of aviation gamma spectrum data is immense.If only a central processing unit(CPU)is used for data post-processing,it would be constrained by computational efficiency.[Purpose]This study aims to propose a CUDA-based graphics processing unit(GPU)parallel solution that optimally accelerates the denoising of airborne gamma-ray spectral data using wavelet transformation.[Methods]First,the impact of different block sizes on computational time was tested to determine the optimal block size for processing airborne gamma-ray spectral data.Subsequently,a GPU,instead of a CPU,was used to calculate the acceleration ratio for handling airborne gamma-ray spectral data of different volumes,and wavelet basis functions were used for those with the same data volume.Finally,by introducing white noise to the experimentally measured airborne gamma-ray spectral data,the signal-to-noise ratio of denoised data was calculated to optimize the threshold denoising method suitable for parallel acceleration of the GPU.[Results]The optimal two-dimensional block sizes for denoising airborne gamma-ray spectral data are 64×64 and 128×128.Among the wavelet basis functions,those that achieved a total time acceleration ratio exceeding 100 compared to CPU processing account for 80%,while those that reached an acceleration ratio exceeding 90 constitute 91%.The coif5 function achieves an acceleration ratio of 353 times whilst the acceleration ratio of the threshold denoising function approaches 570.[Conclusions]All wavelet functions exhibit insufficient denoising effects at low signal-to-noise ratios and excessive denoising effects at high signal-to-noise ratios.Significant denoising can be achieved using hard thresholding of coif5,soft thresholding of coif1,and improved thresholding of bior3.7.
Author 吴和喜
王鑫杰
熊超
王欣
AuthorAffiliation 东华理工大学 核科学与工程学院 南昌 330013%苏州大学 医学部放射医学与防护学院 苏州 215123
AuthorAffiliation_xml – name: 东华理工大学 核科学与工程学院 南昌 330013%苏州大学 医学部放射医学与防护学院 苏州 215123
Author_FL XIONG Chao
WANG Xin
WANG Xinjie
WU Hexi
Author_FL_xml – sequence: 1
  fullname: XIONG Chao
– sequence: 2
  fullname: WANG Xin
– sequence: 3
  fullname: WANG Xinjie
– sequence: 4
  fullname: WU Hexi
Author_xml – sequence: 1
  fullname: 熊超
– sequence: 2
  fullname: 王欣
– sequence: 3
  fullname: 王鑫杰
– sequence: 4
  fullname: 吴和喜
BookMark eNo9z71Kw1AABeA7VLCtvoXglOv9zc2dpMRfKLjUueTe3ChBUjCIq6CDiNWplLpU3exQIgHBgK_gU5ifvoURxekMB87ha4FGNIgMAOsYQYwdR26EEBFOLUqwhAQRBo_DGDIBEUME4QZo_tfLoBXHIUJMIsabYDOfZl_ZnXu41SkfrqrrWfmSfabV5UeVvBajpBjO8-S-SJ8Xk2E-meXvb9XTbX7zuLiYlvNxkY5WwFLgncRm9S_boLez3XP3rO7B7r7b6VqxlMRSQvnIx1iSQClmbMMN9YktHEcZQoz2NNG-UdL2JdWCG-EYKg2XSDMpONe0DdZ-Z8-9KPCio344ODuN6sN-Df0B11BE6Df-MGMc
ClassificationCodes TL84
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11889/j.0253-3219.2024.hjs.47.040201
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL CUDA-based parallel acceleration algorithm for wavelet denoising of airborne γ-ray spectrometry data
EndPage 31
ExternalDocumentID hjs202404002
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s992-b7bd0d1192fbb4e6e5e3d26788be22ecac2cdeb96d93c75e78e39e590c49755c3
ISSN 0253-3219
IngestDate Thu May 29 03:54:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Airborne gamma-ray spectra
阈值降噪
图形处理器
Threshold denoising
航空γ能谱
GPU
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s992-b7bd0d1192fbb4e6e5e3d26788be22ecac2cdeb96d93c75e78e39e590c49755c3
PageCount 11
ParticipantIDs wanfang_journals_hjs202404002
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle 核技术
PublicationTitle_FL Nuclear Techniques
PublicationYear 2024
Publisher 东华理工大学 核科学与工程学院 南昌 330013%苏州大学 医学部放射医学与防护学院 苏州 215123
Publisher_xml – name: 东华理工大学 核科学与工程学院 南昌 330013%苏州大学 医学部放射医学与防护学院 苏州 215123
SSID ssj0049045
ssib001129530
ssib051373102
ssib023167186
ssib001526398
Score 2.3736951
Snippet TL84; 航空γ能谱数据体量巨大,使用中央处理器(Central Processing Unit,CPU)进行数据后处理时计算效率低.提出了一种基于通用并行计算架构CUDA(Compute Unified Device Architecture)的图形处理器(Graphics Processing...
SourceID wanfang
SourceType Aggregation Database
StartPage 21
Title 基于CUDA的航空γ能谱数据小波降噪并行加速算法
URI https://d.wanfangdata.com.cn/periodical/hjs202404002
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5CBNGD-MRXJAcbkWXXmX5Md5-kZ3eW4MFTArmFnZleg4cVTHLJSdCDiNFTkHiJejOHEAkIBvwL_gp3s_kXVvXMzk508XVparqqq77umu2qnu3p8bybsKagKbVhnaqkW-csk3WdpX69EwjVSSUXNnWnfd4P5xb4vUWxODV9u7JraW01aaTrE98r-R-vQh34Fd-S_QfPlkqhAmjwL5TgYSj_ysckFkS3SWRIzLFUcXOhBReSaLjgJFZEKWJcjdEo0YxJxFw9I1ELicgnUUDikGiBNBCqRUyMquFStbEGmhhKYk20Ri5a1U4tyIDaEPWYgKgm1ihDjI_CuIei7UzHRMtCT_6ty1E6jJUgHCln12ATRNIkptxwjAqUYyJYIMQxTkxU5LRAGzaBA5gDYpyIbkGPxiLQCbDMHUEL7BqNVx-E0Or-Gbx13UgrhIhdbaEZHG4fMeJwQG8FEoYTIx0BoxnWKh2VyABQI16hUcWV9lAqB7-UcWNvaK0wm4-nBqFmjTHMsAkVzq-R85nTpOOJSAR2NjquHG4H45ygAUzpfD5JuESr0X5EC9cZPhHtz4hqLvljlfhDBauzUUQrgmV-PGoxKfBjka-SQ-WB_dforJR24blU3UBHNpYfrjS4bPj4LCMYJybldlHgoxzGG8i2TlAp8x0ZxdMTl_lD3iqqfxALGlZOtqR44EMwPilRBEwyd3JenrRx7bvvmZfATnq3Rojv_B6ve9uv1-30HlQS0_mz3pliRTlr8unhnDe1vnzeO105Z_SCd7e_ffD94BVODodvnw2f7xx-PPi2P3z6dbj3abC5N9jY7e-9Hux_ONra6G_t9L98Hr5_2X_x7ujJ9uHum8H-5kVvvh3PN-fqxZdT6iu4mzyRSeZnASzeuknCbWiFZRmFtFQlllKbdlKaZjbRYaZZKoWVyjJthfZTrqUQKbvkTfce9exlb1bAslb5iUiVTDjtdnQWsIynHT_sqiyw3SveTNH7pWJiXFmquuvqH_jXvFPj3_J1b3r18ZqdgTR_NbnhHPwDFZu0Hw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ECUDA%E7%9A%84%E8%88%AA%E7%A9%BA%CE%B3%E8%83%BD%E8%B0%B1%E6%95%B0%E6%8D%AE%E5%B0%8F%E6%B3%A2%E9%99%8D%E5%99%AA%E5%B9%B6%E8%A1%8C%E5%8A%A0%E9%80%9F%E7%AE%97%E6%B3%95&rft.jtitle=%E6%A0%B8%E6%8A%80%E6%9C%AF&rft.au=%E7%86%8A%E8%B6%85&rft.au=%E7%8E%8B%E6%AC%A3&rft.au=%E7%8E%8B%E9%91%AB%E6%9D%B0&rft.au=%E5%90%B4%E5%92%8C%E5%96%9C&rft.date=2024-04-01&rft.pub=%E4%B8%9C%E5%8D%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E6%A0%B8%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E5%8D%97%E6%98%8C+330013%25%E8%8B%8F%E5%B7%9E%E5%A4%A7%E5%AD%A6+%E5%8C%BB%E5%AD%A6%E9%83%A8%E6%94%BE%E5%B0%84%E5%8C%BB%E5%AD%A6%E4%B8%8E%E9%98%B2%E6%8A%A4%E5%AD%A6%E9%99%A2+%E8%8B%8F%E5%B7%9E+215123&rft.issn=0253-3219&rft.volume=47&rft.issue=4&rft.spage=21&rft.epage=31&rft_id=info:doi/10.11889%2Fj.0253-3219.2024.hjs.47.040201&rft.externalDocID=hjs202404002
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhjs%2Fhjs.jpg