融合深度误差反馈学习和注意力机制的短期风电功率预测

为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法.首先,以风电场数值天气预报(numerical weather prediction,NWP)为原始输入,基于双层长短期记忆网络(long short-term memory,LSTM)模型对风电功率进行初步预测.其次,利用极端梯度提升(eXtreme gradient boosting,XGBoost)算法构建误差估计模型,以便在给定未来一段时间内 NWP 数据的情况下对初步预测误差进行快速估计.然后,利用自适应白噪声完备集成经验模态分解法(complete ensemble empirical mod...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 4; pp. 100 - 108
Main Authors 胡宇晗, 朱利鹏, 李佳勇, 李杨, 曾杨, 郑李梦千, 帅智康
Format Journal Article
LanguageChinese
Published 湖南大学电气与信息工程学院,湖南 长沙 410082 16.02.2024
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.230914

Cover

Abstract 为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法.首先,以风电场数值天气预报(numerical weather prediction,NWP)为原始输入,基于双层长短期记忆网络(long short-term memory,LSTM)模型对风电功率进行初步预测.其次,利用极端梯度提升(eXtreme gradient boosting,XGBoost)算法构建误差估计模型,以便在给定未来一段时间内 NWP 数据的情况下对初步预测误差进行快速估计.然后,利用自适应白噪声完备集成经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将初步预测误差分解为不同频段的误差序列,并将其作为附加性反馈输入,对风电功率进行二次预测.进一步在二次预测模型中引入注意力机制,为风电功率预测序列与误差序列动态分配权重,由此引导预测模型在学习过程中充分挖掘学习与误差相关的关键特征.最后,仿真结果表明所提方法可显著提高短期风电功率预测的可靠性.
AbstractList 为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法.首先,以风电场数值天气预报(numerical weather prediction,NWP)为原始输入,基于双层长短期记忆网络(long short-term memory,LSTM)模型对风电功率进行初步预测.其次,利用极端梯度提升(eXtreme gradient boosting,XGBoost)算法构建误差估计模型,以便在给定未来一段时间内 NWP 数据的情况下对初步预测误差进行快速估计.然后,利用自适应白噪声完备集成经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将初步预测误差分解为不同频段的误差序列,并将其作为附加性反馈输入,对风电功率进行二次预测.进一步在二次预测模型中引入注意力机制,为风电功率预测序列与误差序列动态分配权重,由此引导预测模型在学习过程中充分挖掘学习与误差相关的关键特征.最后,仿真结果表明所提方法可显著提高短期风电功率预测的可靠性.
Abstract_FL To enhance the accuracy of wind power forecasting,a short-term wind power forecasting method is proposed,one that synergistically integrates deep feedback learning with attention mechanisms.First,the historical data of numerical weather prediction(NWP)from the wind farm is taken as the original input.A dual-layer long short-term memory(LSTM)-based learning model is used for the preliminary prediction of wind power.Next,an error estimation model is established based on an extreme gradient boosting(XGBoost)algorithm.This enables fast estimation of the initial prediction errors given the future NWP data.Then,complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)is used to decompose the initial prediction errors into error sequences of different frequency bands.These serve as an additional feedback input for the secondary prediction of wind power.Also,an attention mechanism is introduced into the secondary prediction model to dynamically allocate weights to the wind power forecasting and error sequences and thereby instructing the prediction model to fully mine and learn the key features related to the prediction errors during the learning process.Finally,the simulation results indicate that the proposed method can remarkably enhance the reliability of short-term wind power forecasting.
Author 李杨
曾杨
朱利鹏
胡宇晗
李佳勇
郑李梦千
帅智康
AuthorAffiliation 湖南大学电气与信息工程学院,湖南 长沙 410082
AuthorAffiliation_xml – name: 湖南大学电气与信息工程学院,湖南 长沙 410082
Author_FL SHUAI Zhikang
ZHENG Limengqian
ZENG Yang
HU Yuhan
ZHU Lipeng
LI Yang
LI Jiayong
Author_FL_xml – sequence: 1
  fullname: HU Yuhan
– sequence: 2
  fullname: ZHU Lipeng
– sequence: 3
  fullname: LI Jiayong
– sequence: 4
  fullname: LI Yang
– sequence: 5
  fullname: ZENG Yang
– sequence: 6
  fullname: ZHENG Limengqian
– sequence: 7
  fullname: SHUAI Zhikang
Author_xml – sequence: 1
  fullname: 胡宇晗
– sequence: 2
  fullname: 朱利鹏
– sequence: 3
  fullname: 李佳勇
– sequence: 4
  fullname: 李杨
– sequence: 5
  fullname: 曾杨
– sequence: 6
  fullname: 郑李梦千
– sequence: 7
  fullname: 帅智康
BookMark eNotzctKw0AYQOFZVLDWPoFbt4n_ZJKZzFKKNyy46b4kMxNplLQaxBcoWKq9IK60GFEIbmoRqcU-j5O0b6Ggq7P7zhoqRM1IIbSBwcScuWQrNEV00jBbcUuYFgGO7QIqYspsg9jYWUXlOG74AAQ7DnV5ER0uHnt62Mlm73qeLiYTPXvTg94y7ehx-v31pG9vso_XrD3Q3YdsNNedz_y-nSfjbJQsX_r53VR3k7x_tXxuZ9PrdbQSeKexKv-3hGq7O7XKvlE92juobFeNmHMwOPd8CRhLzIRrOcTyAp8QFlAlqS-lC7ZQgmJQgeSOwIoBDZhQFFwCwFxGSmjzj730osCLjuth8-I8-h3WQ3lmgWWDDRjID-2Wa7s
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.230914
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Short-term wind power forecasting with the integration of a deep error feedback learning and attention mechanism
EndPage 108
ExternalDocumentID jdq202404010
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s990-99abd011d17c82532afb337f6ed6bdd804cec610efd95c1e706f7ce6083007873
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 注意力机制
deep learning
LSTM
feedback learning
attention mechanism
风电功率预测
反馈学习
深度学习
长短时记忆单元
wind power forecasting
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s990-99abd011d17c82532afb337f6ed6bdd804cec610efd95c1e706f7ce6083007873
PageCount 9
ParticipantIDs wanfang_journals_jdq202404010
PublicationCentury 2000
PublicationDate 2024-02-16
PublicationDateYYYYMMDD 2024-02-16
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 湖南大学电气与信息工程学院,湖南 长沙 410082
Publisher_xml – name: 湖南大学电气与信息工程学院,湖南 长沙 410082
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4640872
Snippet 为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法.首先,以风电场数值天气预报(numerical weather prediction,NWP)为原始输入,基于双层长短期记忆网络(long short-term...
SourceID wanfang
SourceType Aggregation Database
StartPage 100
Title 融合深度误差反馈学习和注意力机制的短期风电功率预测
URI https://d.wanfangdata.com.cn/periodical/jdq202404010
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JahRBtInx4kUUFbdIDtYpdOyl1mP1TA9B0VOE3EKvbjBGJ7nkHDBEk4h40mBEIXiJQSQG8z32TPIXvlfdmWmdgAsMTc3rt7-uqVc19aot6zp1UpHmrrJdF_9mpElqR3GS28rnjh8nMWc-FjjfvsOn7tKbM2xm5ESvtmtpYT6eTBaPrSv5n6gCDOKKVbL_ENk-UwBAG-ILV4gwXP8qxiSURIVENknIiHKIlCTkJBAkcBESaKI54ugWfhAiiA6xIVuGSiECUjGimwaZkgCAjmHoEdkwDH2iDWdJkRDJNVEBQlQDpSBEkgDIBVEa0bDRQp4lDrRRlk9kaG6BFHbEp4UQgEthcDxDzhFBBvXUeYgwQAjoFpSNwLAChBZRRi7gaGog0sjleNWir-3Rs4YekmCi8ZkuFQGtFVFigFKa6lbEWqGu4CnZ-gWlaQSBxCYqhrgBkeIYFNPQsr7m4lHcpl2WhJpeYrwAWnDDqAnqGAVpZUMVsL5TANnB9sBg4ws0Cyx3a08AQyqIKCg34KPQYvC-1xiWO2FuM2SH9zxAnaB4XlNtzRjrTGxIVlh90GNerXPT2gjmOk4tGXLNoRvD4ywuGJqBNmk_ejA515lLsKJAlfXAvx1g_jB9gj6E0QJLIU96QpT7Kaq1jypPxArs2kCDB-P1v8MchHM1mDf7kEbXX-PAXF9QVm0HwBTMU3hyIW5f7htfnTiGit8YVtuU7LXzqH2vll1On7FOV9PCcV328bPWyOL9c9atg3erxcvl7t6XYn_rYGen2PtcrK8ebi0X21s_vr8vXr3ofv3UXVovVt52N_aL5W-9N0u9ze3uxubhx7Xe691iZbO39uzww1J39_l5a7oVTjem7OrlJ3YHEkRbqShOYexNXZFIj_lelMe-L3KepTxOU-nQJEtg6pPlqWKJmwmH5yLJOMyoMOsX_gVrtP24nV20xl2fMpZGbqIiRiMRKXBNzqSSGc-5K6NL1lhl-2z129aZrcfs8h_uX7FODfrIVWt0_ulCNgaZ-nx8zUT5J7Jzr5I
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E6%B7%B1%E5%BA%A6%E8%AF%AF%E5%B7%AE%E5%8F%8D%E9%A6%88%E5%AD%A6%E4%B9%A0%E5%92%8C%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6%E7%9A%84%E7%9F%AD%E6%9C%9F%E9%A3%8E%E7%94%B5%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E8%83%A1%E5%AE%87%E6%99%97&rft.au=%E6%9C%B1%E5%88%A9%E9%B9%8F&rft.au=%E6%9D%8E%E4%BD%B3%E5%8B%87&rft.au=%E6%9D%8E%E6%9D%A8&rft.date=2024-02-16&rft.pub=%E6%B9%96%E5%8D%97%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8D%97+%E9%95%BF%E6%B2%99+410082&rft.issn=1674-3415&rft.volume=52&rft.issue=4&rft.spage=100&rft.epage=108&rft_id=info:doi/10.19783%2Fj.cnki.pspc.230914&rft.externalDocID=jdq202404010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg