An Infinite Replicated Softmax Model for Topic Modeling

In this paper, we describe the infinite replicated Softmax model (iRSM) as an adaptive topic model, utilizing the combination of the infinite restricted Boltzmann machine (iRBM) and the replicated Softmax model (RSM). In our approach, the iRBM extends the RBM by enabling its hidden layer to adapt to...

Full description

Saved in:
Bibliographic Details
Published inModeling Decisions for Artificial Intelligence pp. 307 - 318
Main Authors Huhnstock, Nikolas Alexander, Karlsson, Alexander, Riveiro, Maria, Steinhauer, H. Joe
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Cham Springer International Publishing 2019
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we describe the infinite replicated Softmax model (iRSM) as an adaptive topic model, utilizing the combination of the infinite restricted Boltzmann machine (iRBM) and the replicated Softmax model (RSM). In our approach, the iRBM extends the RBM by enabling its hidden layer to adapt to the data at hand, while the RSM allows for modeling low-dimensional latent semantic representation from a corpus. The combination of the two results is a method that is able to self-adapt to the number of topics within the document corpus and hence, renders manual identification of the correct number of topics superfluous. We propose a hybrid training approach to effectively improve the performance of the iRSM. An empirical evaluation is performed on a standard data set and the results are compared to the results of a baseline topic model. The results show that the iRSM adapts its hidden layer size to the data and when trained in the proposed hybrid manner outperforms the base RSM model.
AbstractList In this paper, we describe the infinite replicated Softmax model (iRSM) as an adaptive topic model, utilizing the combination of the infinite restricted Boltzmann machine (iRBM) and the replicated Softmax model (RSM). In our approach, the iRBM extends the RBM by enabling its hidden layer to adapt to the data at hand, while the RSM allows for modeling low-dimensional latent semantic representation from a corpus. The combination of the two results is a method that is able to self-adapt to the number of topics within the document corpus and hence, renders manual identification of the correct number of topics superfluous. We propose a hybrid training approach to effectively improve the performance of the iRSM. An empirical evaluation is performed on a standard data set and the results are compared to the results of a baseline topic model. The results show that the iRSM adapts its hidden layer size to the data and when trained in the proposed hybrid manner outperforms the base RSM model.
Author Riveiro, Maria
Huhnstock, Nikolas Alexander
Karlsson, Alexander
Steinhauer, H. Joe
Author_xml – sequence: 1
  givenname: Nikolas Alexander
  surname: Huhnstock
  fullname: Huhnstock, Nikolas Alexander
  email: nikolas.huhnstock@his.se
– sequence: 2
  givenname: Alexander
  surname: Karlsson
  fullname: Karlsson, Alexander
– sequence: 3
  givenname: Maria
  surname: Riveiro
  fullname: Riveiro, Maria
– sequence: 4
  givenname: H. Joe
  surname: Steinhauer
  fullname: Steinhauer, H. Joe
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17664$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-45795$$DView record from Swedish Publication Index
BookMark eNqNkE1PAjEQhqtiIiD_wMPetdpOu-32SPCLBGOi6LUp3RaLsN3srlH_vQXx7mlm3vfJHJ4B6lWxcgidUXJJCZFXShaYYcIIBiElw7kGeYAGLCW7gB2iPhWUYsa4OkKjxP91UPRQf7tjJTk7QYO2XRFCQCroIzmusmnlQxU6lz25eh2s6VyZPUffbcxX9hBLt858bLJ5rIP9vUO1PEXH3qxbN9rPIXq5vZlP7vHs8W46Gc9wy6jscK44UOtIQWBRgGDS2hSAzb1Qoiih4FYJaYAb7xgFILykxhLwueG-ZCUbovPfv-2nqz8Wum7CxjTfOpqgr8PrWMdmqd9WmudS5Ym--AcdWk2lEDzhsMcTWC1doxcxvqeW6K10nSRqppM6vXOst9LZDzbGcK4
ContentType Book Chapter
Conference Proceeding
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID ABSHZ
ADTPV
BNKNJ
BVBDO
D8T
DF6
AABRY
D8X
DOI 10.1007/978-3-030-26773-5_27
DatabaseName SWEPUB Högskolan i Skövde full text
SwePub
SwePub Conference
SwePub Conference full text
SWEPUB Freely available online
SWEPUB Högskolan i Skövde
SWEPUB Högskolan i Jönköping full text
SWEPUB Högskolan i Jönköping
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3030267733
9783030267735
EISSN 1611-3349
Editor Torra, Vicenç
Narukawa, Yasuo
Viviani, Marco
Pasi, Gabriella
Editor_xml – sequence: 1
  givenname: Vicenç
  orcidid: 0000-0002-0368-8037
  surname: Torra
  fullname: Torra, Vicenç
  email: vtorra@ieee.org
– sequence: 2
  givenname: Yasuo
  surname: Narukawa
  fullname: Narukawa, Yasuo
  email: nrkwy@eng.tamagawa.ac.jp
– sequence: 3
  givenname: Gabriella
  orcidid: 0000-0002-6080-8170
  surname: Pasi
  fullname: Pasi, Gabriella
  email: gabriella.pasi@unimib.it
– sequence: 4
  givenname: Marco
  orcidid: 0000-0002-2274-9050
  surname: Viviani
  fullname: Viviani, Marco
  email: marco.viviani@unimib.it
EndPage 318
ExternalDocumentID oai_DiVA_org_hj_45795
oai_DiVA_org_his_17664
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
38.
AABBV
ABSHZ
ADTPV
AEDXK
AEJLV
AEKFX
AIFIR
AYMPB
BBABE
BNKNJ
BVBDO
CXBFT
CZZ
D8T
DF6
EXGDT
FCSXQ
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
AABRY
D8X
ID FETCH-LOGICAL-s317t-59421ce0802b82637cc4212c5f6968d284c967a24afe312204d1ac02f5a4fd3d3
ISBN 9783030267728
3030267725
9783030267735
3030267733
ISSN 0302-9743
IngestDate Tue Oct 01 22:06:04 EDT 2024
Tue Oct 01 22:10:27 EDT 2024
Tue Oct 01 19:40:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s317t-59421ce0802b82637cc4212c5f6968d284c967a24afe312204d1ac02f5a4fd3d3
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-45795
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_hj_45795
swepub_primary_oai_DiVA_org_his_17664
springer_books_10_1007_978_3_030_26773_5_27
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 16th International Conference, MDAI 2019, Milan, Italy, September 4–6, 2019, Proceedings
PublicationTitle Modeling Decisions for Artificial Intelligence
PublicationYear 2019
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  orcidid: 0000-0002-4029-7051
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002792
ssj0002209125
Score 2.122898
Snippet In this paper, we describe the infinite replicated Softmax model (iRSM) as an adaptive topic model, utilizing the combination of the infinite restricted...
SourceID swepub
springer
SourceType Open Access Repository
Publisher
StartPage 307
SubjectTerms Adaptive Neural Network
Restricted Boltzmann machine
Skövde Artificial Intelligence Lab (SAIL)
Topic modeling
Unsupervised learning
Title An Infinite Replicated Softmax Model for Topic Modeling
URI http://link.springer.com/10.1007/978-3-030-26773-5_27
https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17664
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-45795
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLa6ceMADBCd2OTDOEWZWttxlAOHig111dZTN-1mOYlDAyKZ2lRC_A5-MO_FdpN2E9K4RFXUJs770ufn5_d9j5AzrgvcnzEhhAKjUMjUhIkssN5B5DxlETMaCc43czm9FbP76H4w-NOrWto06Xn2-0leyf-gCucAV2TJPgPZ7UXhBHwGfOEICMNxL_jdTbPaDkPYwwYX-heuTU6rrIDZ9tKpQlz15DY7-JYQEDonOC9_wMp23bFctu5Xr3Ds1Q4FZrs3Aw6ytPSYG22rlH1pcFkt9ca-BNPzYFbvvJFt_rEoMcjFuN-y77ButGh-6l9tV7aWTBks6ocyC_zzWb-Heszrz9dux2NeN20hWeCbUngf9ShhuZfy7LJuOytcmGGxR1bMek4aT4WwDrKO0VjHLVGOkVv5U-eMue2n6-Z1bv38oymjXyUCVw7xbjyMFIsPyEGcgKd8MbmcXd9tM3eMQYzVKTqOUILR7lXZUSGDyI86shpP3VP02JtP3bK3H7-nXdvGO4vX5CVyYCiSU8B6b8jAVEfklTc2dcZ-S-JJRT2mtMOUOkxpiyEFTGmLKfWYviO3Xy8XX6aha8URriHAbMIoEWycGSRmp7Ag5XGWYSlBFhUorpRDjJMlMtZM6MLwMVhI5GOdjVgRaVHkPOfvyWFVV-YDoTE3gmuYZwWXQmswnpGpLFB6jTM95kMSeBMo_HOtlVfWBoMprsBgqjWYQoMNySdrJfVg1VkU6qVflHcTVa--qWUJP4-lFENy9s_vfVciipPo-Fk3_0gOm9XGnEBY2qSn7j35C0c7iBg
link.rule.ids 230,310,311,785,786,790,795,796,799,891,4069,4070,27956
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Modeling+Decisions+for+Artificial+Intelligence&rft.au=Huhnstock%2C+Nikolas+Alexander&rft.au=Karlsson%2C+Alexander&rft.au=Riveiro%2C+Maria&rft.au=Steinhauer%2C+H.+Joe&rft.atitle=An+Infinite+Replicated+Softmax+Model+for+Topic+Modeling&rft.series=Lecture+Notes+in+Computer+Science&rft.pub=Springer+International+Publishing&rft.isbn=9783030267728&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=307&rft.epage=318&rft_id=info:doi/10.1007%2F978-3-030-26773-5_27
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon