Classifying images using restricted Boltzmann machines and convolutional neural networks
To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts...
Saved in:
Main Authors | , , |
---|---|
Format | Conference Proceeding |
Language | English |
Published |
SPIE
21.07.2017
|
Online Access | Get full text |
ISBN | 1510613048 9781510613041 |
ISSN | 0277-786X |
DOI | 10.1117/12.2281994 |
Cover
Abstract | To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets. |
---|---|
AbstractList | To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets. |
Author | Xu, Tongde Zhao, Zhijun Dai, Chenyu |
Author_xml | – sequence: 1 givenname: Zhijun surname: Zhao fullname: Zhao, Zhijun organization: Guangzhou Univ. (China) – sequence: 2 givenname: Tongde surname: Xu fullname: Xu, Tongde organization: Guangdong AIB Polytechnic College (China) – sequence: 3 givenname: Chenyu surname: Dai fullname: Dai, Chenyu organization: China Mobile Group Guangdong Co., Ltd. (China) |
BookMark | eNp1kE9PAjEUxJuIiYBe_AR7Nlns63a33SOCIIZEEiTh1pT-werS3WwXjXx6F-TiwdNk5r38Mpke6vjSG4RuAQ8AgN0DGRDCIc_pBepBCjiDBFPeQV1MGIsZz9ZXqBfCO8aEpyzvovWokCE4--38NnI7uTUh2oejqU1oaqcao6OHsmgOO-l9tJPqzfn2R3odqdJ_lsW-caWXReTNvj5J81XWH-EaXVpZBHNz1j5aTR5fR0_x_GU6Gw3ncSApa-KUM77RmaRZnmbWQKZAKkpSpbmigLVlOt-oTZJQSxNOE8O15aY9KkIynsqkj55_uaFyRlR1qYzRbf8gFsvZcjwFTAkWB1f98cO6caowi_FEnAKyEpW2LezuHxhgcVxYABHnhZMfi_1wUQ |
ContentType | Conference Proceeding |
Copyright | COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
Copyright_xml | – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
DOI | 10.1117/12.2281994 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
Editor | Jiang, Xudong Falco, Charles M |
Editor_xml | – sequence: 1 givenname: Charles M surname: Falco fullname: Falco, Charles M organization: College of Optical Sciences, The Univ. of Arizona (United States) – sequence: 2 givenname: Xudong surname: Jiang fullname: Jiang, Xudong organization: Nanyang Technological Univ. (Singapore) |
EndPage | 104202U-9 |
ExternalDocumentID | 10_1117_12_2281994 |
GroupedDBID | 29O 5SJ ACGFS ALMA_UNASSIGNED_HOLDINGS EBS EJD F5P FQ0 R.2 RNS RSJ SPBNH UT2 |
ID | FETCH-LOGICAL-s257t-5878bd6a46956fe16c1ac425cd8c410df7d9bcb334f43843e8df8ed8cc22685a3 |
ISBN | 1510613048 9781510613041 |
ISSN | 0277-786X |
IngestDate | Tue Nov 10 16:05:27 EST 2020 Fri May 31 18:21:06 EDT 2019 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s257t-5878bd6a46956fe16c1ac425cd8c410df7d9bcb334f43843e8df8ed8cc22685a3 |
Notes | Conference Date: 2017-05-19|2017-05-22 Conference Location: Hong Kong, China |
ParticipantIDs | spie_proceedings_10_1117_12_2281994 |
ProviderPackageCode | SPBNH UT2 FQ0 R.2 |
PublicationCentury | 2000 |
PublicationDate | 20170721 |
PublicationDateYYYYMMDD | 2017-07-21 |
PublicationDate_xml | – month: 7 year: 2017 text: 20170721 day: 21 |
PublicationDecade | 2010 |
PublicationYear | 2017 |
Publisher | SPIE |
Publisher_xml | – name: SPIE |
SSID | ssj0028579 ssib040212369 |
Score | 2.011582 |
Snippet | To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on... |
SourceID | spie |
SourceType | Enrichment Source Publisher |
StartPage | 104202U |
Title | Classifying images using restricted Boltzmann machines and convolutional neural networks |
URI | http://www.dx.doi.org/10.1117/12.2281994 |
Volume | 10420 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4GnwYYYG8gSe0MZ-bAd53G0jG0CVKmrVO0lihObBtG0WpNJ61_P2XE-Roc0eEljJ6nd3s_nO8f3O4SOXRYJyqPMAYAQhzBwdyIqpEO9JGWSRkJJs9viOzufkssZnXWJC010SSlO0s2DcSX_I1WoA7nqKNl_kGz7pVAB5yBfOIKE4bgt4wenGpPTMq9jlfJFogkbKuP965QboOK0Pflp-avcLJKi-LAwOyfl2gazFbe2dyAmzWtpPsyu8NbQvp4nZi31ep7_rFoczSoj5mXxI2txMarzWg_nsrir-msJnlmk9Lu1hMn4oudfgi2gJ3uX9PSjeeMbcpN8sFOgMPDdnhI0ZX_am1NtjRP9RWmbsH__xNdv9eqcx3-QYNeuShh7fmxveop2fE2WOEA7p6NvXyeNEiGasz7QWdOt181pTbjY9FxH97W_zJJ-NWXPEthCUx-7_uhNfqtc9uyOq12030Vk4nELgBfoiSxeouc9Msk9NOthAddYwAYLuMMCbrGAGyxgwAK-hwVcYwE3WNhH07PPV8Nzx-bNcNaggEuH8pCLjCWEgfOrpMdSGHigmzUNBPHcTIVZJFIRBESRgJNA8kxxCRdTsMU5TYJXaFAsC_kaYcWpL5hSLs0UCVMqgsSLZArPsVBy6R-g9_qvibshsI63ZXWAhlt3jScXk9EXA4x4k6_ulU9rpTkencUWOfEqU28e1dYhetYh-wgNyptKvgW7sRTvLFJ-A-VCZZQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Classifying+images+using+restricted+Boltzmann+machines+and+convolutional+neural+networks&rft.au=Zhao%2C+Zhijun&rft.au=Xu%2C+Tongde&rft.au=Dai%2C+Chenyu&rft.date=2017-07-21&rft.pub=SPIE&rft.isbn=1510613048&rft.issn=0277-786X&rft.volume=10420&rft.spage=104202U&rft.epage=104202U-9&rft_id=info:doi/10.1117%2F12.2281994&rft.externalDocID=10_1117_12_2281994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon |