Classifying images using restricted Boltzmann machines and convolutional neural networks

To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts...

Full description

Saved in:
Bibliographic Details
Main Authors Zhao, Zhijun, Xu, Tongde, Dai, Chenyu
Format Conference Proceeding
LanguageEnglish
Published SPIE 21.07.2017
Online AccessGet full text
ISBN1510613048
9781510613041
ISSN0277-786X
DOI10.1117/12.2281994

Cover

Abstract To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets.
AbstractList To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets.
Author Xu, Tongde
Zhao, Zhijun
Dai, Chenyu
Author_xml – sequence: 1
  givenname: Zhijun
  surname: Zhao
  fullname: Zhao, Zhijun
  organization: Guangzhou Univ. (China)
– sequence: 2
  givenname: Tongde
  surname: Xu
  fullname: Xu, Tongde
  organization: Guangdong AIB Polytechnic College (China)
– sequence: 3
  givenname: Chenyu
  surname: Dai
  fullname: Dai, Chenyu
  organization: China Mobile Group Guangdong Co., Ltd. (China)
BookMark eNp1kE9PAjEUxJuIiYBe_AR7Nlns63a33SOCIIZEEiTh1pT-werS3WwXjXx6F-TiwdNk5r38Mpke6vjSG4RuAQ8AgN0DGRDCIc_pBepBCjiDBFPeQV1MGIsZz9ZXqBfCO8aEpyzvovWokCE4--38NnI7uTUh2oejqU1oaqcao6OHsmgOO-l9tJPqzfn2R3odqdJ_lsW-caWXReTNvj5J81XWH-EaXVpZBHNz1j5aTR5fR0_x_GU6Gw3ncSApa-KUM77RmaRZnmbWQKZAKkpSpbmigLVlOt-oTZJQSxNOE8O15aY9KkIynsqkj55_uaFyRlR1qYzRbf8gFsvZcjwFTAkWB1f98cO6caowi_FEnAKyEpW2LezuHxhgcVxYABHnhZMfi_1wUQ
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.2281994
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Jiang, Xudong
Falco, Charles M
Editor_xml – sequence: 1
  givenname: Charles M
  surname: Falco
  fullname: Falco, Charles M
  organization: College of Optical Sciences, The Univ. of Arizona (United States)
– sequence: 2
  givenname: Xudong
  surname: Jiang
  fullname: Jiang, Xudong
  organization: Nanyang Technological Univ. (Singapore)
EndPage 104202U-9
ExternalDocumentID 10_1117_12_2281994
GroupedDBID 29O
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
F5P
FQ0
R.2
RNS
RSJ
SPBNH
UT2
ID FETCH-LOGICAL-s257t-5878bd6a46956fe16c1ac425cd8c410df7d9bcb334f43843e8df8ed8cc22685a3
ISBN 1510613048
9781510613041
ISSN 0277-786X
IngestDate Tue Nov 10 16:05:27 EST 2020
Fri May 31 18:21:06 EDT 2019
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s257t-5878bd6a46956fe16c1ac425cd8c410df7d9bcb334f43843e8df8ed8cc22685a3
Notes Conference Date: 2017-05-19|2017-05-22
Conference Location: Hong Kong, China
ParticipantIDs spie_proceedings_10_1117_12_2281994
ProviderPackageCode SPBNH
UT2
FQ0
R.2
PublicationCentury 2000
PublicationDate 20170721
PublicationDateYYYYMMDD 2017-07-21
PublicationDate_xml – month: 7
  year: 2017
  text: 20170721
  day: 21
PublicationDecade 2010
PublicationYear 2017
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
ssib040212369
Score 2.011582
Snippet To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on...
SourceID spie
SourceType Enrichment Source
Publisher
StartPage 104202U
Title Classifying images using restricted Boltzmann machines and convolutional neural networks
URI http://www.dx.doi.org/10.1117/12.2281994
Volume 10420
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4GnwYYYG8gSe0MZ-bAd53G0jG0CVKmrVO0lihObBtG0WpNJ61_P2XE-Roc0eEljJ6nd3s_nO8f3O4SOXRYJyqPMAYAQhzBwdyIqpEO9JGWSRkJJs9viOzufkssZnXWJC010SSlO0s2DcSX_I1WoA7nqKNl_kGz7pVAB5yBfOIKE4bgt4wenGpPTMq9jlfJFogkbKuP965QboOK0Pflp-avcLJKi-LAwOyfl2gazFbe2dyAmzWtpPsyu8NbQvp4nZi31ep7_rFoczSoj5mXxI2txMarzWg_nsrir-msJnlmk9Lu1hMn4oudfgi2gJ3uX9PSjeeMbcpN8sFOgMPDdnhI0ZX_am1NtjRP9RWmbsH__xNdv9eqcx3-QYNeuShh7fmxveop2fE2WOEA7p6NvXyeNEiGasz7QWdOt181pTbjY9FxH97W_zJJ-NWXPEthCUx-7_uhNfqtc9uyOq12030Vk4nELgBfoiSxeouc9Msk9NOthAddYwAYLuMMCbrGAGyxgwAK-hwVcYwE3WNhH07PPV8Nzx-bNcNaggEuH8pCLjCWEgfOrpMdSGHigmzUNBPHcTIVZJFIRBESRgJNA8kxxCRdTsMU5TYJXaFAsC_kaYcWpL5hSLs0UCVMqgsSLZArPsVBy6R-g9_qvibshsI63ZXWAhlt3jScXk9EXA4x4k6_ulU9rpTkencUWOfEqU28e1dYhetYh-wgNyptKvgW7sRTvLFJ-A-VCZZQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Classifying+images+using+restricted+Boltzmann+machines+and+convolutional+neural+networks&rft.au=Zhao%2C+Zhijun&rft.au=Xu%2C+Tongde&rft.au=Dai%2C+Chenyu&rft.date=2017-07-21&rft.pub=SPIE&rft.isbn=1510613048&rft.issn=0277-786X&rft.volume=10420&rft.spage=104202U&rft.epage=104202U-9&rft_id=info:doi/10.1117%2F12.2281994&rft.externalDocID=10_1117_12_2281994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon