Learning Deep Temporal Representations for fMRI Brain Decoding
Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding tasks. In this study, we propose a combination of autoencoding and temporal convolutional neural network architecture which aims to reduce the fea...
Saved in:
Published in | Machine Learning Meets Medical Imaging pp. 25 - 34 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
2015
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783319279282 3319279289 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-27929-9_3 |
Cover
Abstract | Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding tasks. In this study, we propose a combination of autoencoding and temporal convolutional neural network architecture which aims to reduce the feature dimensionality along with improved classification performance. The proposed network learns temporal representations of voxel intensities at each layer of the network by leveraging unlabeled fMRI data with regularized autoencoders. Learned temporal representations capture the temporal regularities of the fMRI data and are observed to be an expressive bank of activation patterns. Then a temporal convolutional neural network with spatial pooling layers reduces the dimensionality of the learned representations. By employing the proposed method, raw input fMRI data is mapped to a low-dimensional feature space where the final classification is conducted. In addition, a simple decorrelated representation approach is proposed for tuning the model hyper-parameters. The proposed method is tested on a ten class recognition memory experiment with nine subjects. Results support the efficiency and potential of the proposed model, compared to the baseline multi-voxel pattern analysis techniques. |
---|---|
AbstractList | Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding tasks. In this study, we propose a combination of autoencoding and temporal convolutional neural network architecture which aims to reduce the feature dimensionality along with improved classification performance. The proposed network learns temporal representations of voxel intensities at each layer of the network by leveraging unlabeled fMRI data with regularized autoencoders. Learned temporal representations capture the temporal regularities of the fMRI data and are observed to be an expressive bank of activation patterns. Then a temporal convolutional neural network with spatial pooling layers reduces the dimensionality of the learned representations. By employing the proposed method, raw input fMRI data is mapped to a low-dimensional feature space where the final classification is conducted. In addition, a simple decorrelated representation approach is proposed for tuning the model hyper-parameters. The proposed method is tested on a ten class recognition memory experiment with nine subjects. Results support the efficiency and potential of the proposed model, compared to the baseline multi-voxel pattern analysis techniques. |
Author | Yarman Vural, Fatos T. Firat, Orhan Oztekin, Ilke Aksan, Emre |
Author_xml | – sequence: 1 givenname: Orhan surname: Firat fullname: Firat, Orhan email: orhan.firat@ceng.metu.edu.tr organization: Middle East Technical University, Ankara, Turkey – sequence: 2 givenname: Emre surname: Aksan fullname: Aksan, Emre organization: Middle East Technical University, Ankara, Turkey – sequence: 3 givenname: Ilke surname: Oztekin fullname: Oztekin, Ilke organization: Koc University, Istanbul, Turkey – sequence: 4 givenname: Fatos T. surname: Yarman Vural fullname: Yarman Vural, Fatos T. organization: Middle East Technical University, Ankara, Turkey |
BookMark | eNo1kN1OAyEQhVFr4m7tE3jDC6DAsAvcmGj9a7LGpKnXBLasqVbYwL5_pFWvJjPnzEzOV6NZiMEjdMXoNaNU3mipCBBgmnCpuSbawAmqoQyOvTxFFWsZIwBCn6FFsf9ris9QRYFyoqWAC1Tn_EkpPUgVuu28TWEXPvCD9yPe-O8xJrvHaz8mn32Y7LSLIeMhJjy8rlf4PtldKOY-bsvWJTof7D77xV-do_enx83yhXRvz6vlXUcyF3wivW5Z01LbDkwMSmydUiAaLXjPQYEHK1yvmITWSaqAS2G18NAoJ91QglCYI_Z7N4-pvPXJuBi_smHUHOiYEteAKYHNkYYpdOAHR1JTNA |
ContentType | Book Chapter |
Copyright | Springer International Publishing Switzerland 2015 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2015 |
DOI | 10.1007/978-3-319-27929-9_3 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 3319279297 9783319279299 |
EISSN | 1611-3349 |
Editor | Lombaert, Herve Bhatia, Kanwal |
Editor_xml | – sequence: 1 givenname: Kanwal surname: Bhatia fullname: Bhatia, Kanwal email: k.bhatia@csc.mrc.ac.uk – sequence: 2 givenname: Herve surname: Lombaert fullname: Lombaert, Herve email: herve.lombaert@inria.fr |
EndPage | 34 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-s242t-c961560a6f14f84db88345942c2383e3a4bc81736b7083274a94e358b7bf78303 |
ISBN | 9783319279282 3319279289 |
ISSN | 0302-9743 |
IngestDate | Wed Sep 17 04:00:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s242t-c961560a6f14f84db88345942c2383e3a4bc81736b7083274a94e358b7bf78303 |
Notes | Electronic supplementary materialThe online version of this chapter (doi:10.1007/978-3-319-27929-9_3) contains supplementary material, which is available to authorized users. |
OpenAccessLink | https://hdl.handle.net/11511/38910 |
PageCount | 10 |
ParticipantIDs | springer_books_10_1007_978_3_319_27929_9_3 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers |
PublicationTitle | Machine Learning Meets Medical Imaging |
PublicationYear | 2015 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, United Kingdom – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, United Kingdom – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Madras, Indian Institute of Technology, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
SSID | ssj0002792 ssj0001599550 |
Score | 1.7891301 |
Snippet | Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding... |
SourceID | springer |
SourceType | Publisher |
StartPage | 25 |
SubjectTerms | Convolutional Layer Convolutional Neural Network fMRI Data Hide Unit Temporal Filter |
Title | Learning Deep Temporal Representations for fMRI Brain Decoding |
URI | http://link.springer.com/10.1007/978-3-319-27929-9_3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2ywVxKE9BecgHTkSpyNpJnAtSBYu6FdtKaFuVUxR7xwWVZqsmvfRP8JeZieMkTbmUS7SyLMeZzzsez3i-Yew97oiQxRa1nzCzUBppQ6WLdTgzEteXAK015Q4vD5P9Y3lwGp9OJn8Gt5aua71rbv6ZV_I_qGIb4kpZsvdAthsUG_A34otPRBifI-P3tpu1rTBE1yDBM6SeBUuAuuoiL4uLpv5Qhw_F00meR1c_-wWxd145B-j8or8Ee3RTQ1uka_H7vGv-Qc7vMjghno7G5MXjehWsdoeLrpvLF4DLYOVor4i9_7LPciobBojALr8vcGUVv0rsbDbdFkqCgwpHcrGNw03dXBkLfPkJr42G7oooHrkrvLty5PDsfW63zrcCFQQxHKqhC1SgDsdTkFOL4NR2QmSMwpGfelUcDzZ15zC9s10Mb4hQNhe9KwuzXGyxrVTJKXuwNz_4dtI77YiejcLA7VZP_V2Yyk2Jkof8lDNH79R_Qsd55WiNR2-8E4lvDJzVY_aIkl44ZaOgwJ6wCZRP2XZ7ROGtyCts8jD4tmfskwedE-jcg85HoHMEnRPovAGde9Cfs-Ov89Xn_bCtyhFWaM7VockSyr4vEhtJq-RaKyVknMmZQetPgCikNipKRaJTNO9nqSwyCSJWOtUWxfFRvGDTclPCS8aliYxNihjwXC1lFmkZ41DWrjWaxaDEK_bByySn_1mVe5JtFGAuchRg3ggwRwHu3Kfza_awX5xv2LS-uoa3aF3W-l2L-V_8RG_8 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+Meets+Medical+Imaging&rft.au=Firat%2C+Orhan&rft.au=Aksan%2C+Emre&rft.au=Oztekin%2C+Ilke&rft.au=Yarman+Vural%2C+Fatos+T.&rft.atitle=Learning+Deep+Temporal+Representations+for+fMRI+Brain+Decoding&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319279282&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=25&rft.epage=34&rft_id=info:doi/10.1007%2F978-3-319-27929-9_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |