Learning Deep Temporal Representations for fMRI Brain Decoding

Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding tasks. In this study, we propose a combination of autoencoding and temporal convolutional neural network architecture which aims to reduce the fea...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning Meets Medical Imaging pp. 25 - 34
Main Authors Firat, Orhan, Aksan, Emre, Oztekin, Ilke, Yarman Vural, Fatos T.
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2015
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319279282
3319279289
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-27929-9_3

Cover

Abstract Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding tasks. In this study, we propose a combination of autoencoding and temporal convolutional neural network architecture which aims to reduce the feature dimensionality along with improved classification performance. The proposed network learns temporal representations of voxel intensities at each layer of the network by leveraging unlabeled fMRI data with regularized autoencoders. Learned temporal representations capture the temporal regularities of the fMRI data and are observed to be an expressive bank of activation patterns. Then a temporal convolutional neural network with spatial pooling layers reduces the dimensionality of the learned representations. By employing the proposed method, raw input fMRI data is mapped to a low-dimensional feature space where the final classification is conducted. In addition, a simple decorrelated representation approach is proposed for tuning the model hyper-parameters. The proposed method is tested on a ten class recognition memory experiment with nine subjects. Results support the efficiency and potential of the proposed model, compared to the baseline multi-voxel pattern analysis techniques.
AbstractList Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding tasks. In this study, we propose a combination of autoencoding and temporal convolutional neural network architecture which aims to reduce the feature dimensionality along with improved classification performance. The proposed network learns temporal representations of voxel intensities at each layer of the network by leveraging unlabeled fMRI data with regularized autoencoders. Learned temporal representations capture the temporal regularities of the fMRI data and are observed to be an expressive bank of activation patterns. Then a temporal convolutional neural network with spatial pooling layers reduces the dimensionality of the learned representations. By employing the proposed method, raw input fMRI data is mapped to a low-dimensional feature space where the final classification is conducted. In addition, a simple decorrelated representation approach is proposed for tuning the model hyper-parameters. The proposed method is tested on a ten class recognition memory experiment with nine subjects. Results support the efficiency and potential of the proposed model, compared to the baseline multi-voxel pattern analysis techniques.
Author Yarman Vural, Fatos T.
Firat, Orhan
Oztekin, Ilke
Aksan, Emre
Author_xml – sequence: 1
  givenname: Orhan
  surname: Firat
  fullname: Firat, Orhan
  email: orhan.firat@ceng.metu.edu.tr
  organization: Middle East Technical University, Ankara, Turkey
– sequence: 2
  givenname: Emre
  surname: Aksan
  fullname: Aksan, Emre
  organization: Middle East Technical University, Ankara, Turkey
– sequence: 3
  givenname: Ilke
  surname: Oztekin
  fullname: Oztekin, Ilke
  organization: Koc University, Istanbul, Turkey
– sequence: 4
  givenname: Fatos T.
  surname: Yarman Vural
  fullname: Yarman Vural, Fatos T.
  organization: Middle East Technical University, Ankara, Turkey
BookMark eNo1kN1OAyEQhVFr4m7tE3jDC6DAsAvcmGj9a7LGpKnXBLasqVbYwL5_pFWvJjPnzEzOV6NZiMEjdMXoNaNU3mipCBBgmnCpuSbawAmqoQyOvTxFFWsZIwBCn6FFsf9ris9QRYFyoqWAC1Tn_EkpPUgVuu28TWEXPvCD9yPe-O8xJrvHaz8mn32Y7LSLIeMhJjy8rlf4PtldKOY-bsvWJTof7D77xV-do_enx83yhXRvz6vlXUcyF3wivW5Z01LbDkwMSmydUiAaLXjPQYEHK1yvmITWSaqAS2G18NAoJ91QglCYI_Z7N4-pvPXJuBi_smHUHOiYEteAKYHNkYYpdOAHR1JTNA
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DOI 10.1007/978-3-319-27929-9_3
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 3319279297
9783319279299
EISSN 1611-3349
Editor Lombaert, Herve
Bhatia, Kanwal
Editor_xml – sequence: 1
  givenname: Kanwal
  surname: Bhatia
  fullname: Bhatia, Kanwal
  email: k.bhatia@csc.mrc.ac.uk
– sequence: 2
  givenname: Herve
  surname: Lombaert
  fullname: Lombaert, Herve
  email: herve.lombaert@inria.fr
EndPage 34
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s242t-c961560a6f14f84db88345942c2383e3a4bc81736b7083274a94e358b7bf78303
ISBN 9783319279282
3319279289
ISSN 0302-9743
IngestDate Wed Sep 17 04:00:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s242t-c961560a6f14f84db88345942c2383e3a4bc81736b7083274a94e358b7bf78303
Notes Electronic supplementary materialThe online version of this chapter (doi:10.1007/978-3-319-27929-9_3) contains supplementary material, which is available to authorized users.
OpenAccessLink https://hdl.handle.net/11511/38910
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_319_27929_9_3
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers
PublicationTitle Machine Learning Meets Medical Imaging
PublicationYear 2015
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Madras, Indian Institute of Technology, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0002792
ssj0001599550
Score 1.7891301
Snippet Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding...
SourceID springer
SourceType Publisher
StartPage 25
SubjectTerms Convolutional Layer
Convolutional Neural Network
fMRI Data
Hide Unit
Temporal Filter
Title Learning Deep Temporal Representations for fMRI Brain Decoding
URI http://link.springer.com/10.1007/978-3-319-27929-9_3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2ywVxKE9BecgHTkSpyNpJnAtSBYu6FdtKaFuVUxR7xwWVZqsmvfRP8JeZieMkTbmUS7SyLMeZzzsez3i-Yew97oiQxRa1nzCzUBppQ6WLdTgzEteXAK015Q4vD5P9Y3lwGp9OJn8Gt5aua71rbv6ZV_I_qGIb4kpZsvdAthsUG_A34otPRBifI-P3tpu1rTBE1yDBM6SeBUuAuuoiL4uLpv5Qhw_F00meR1c_-wWxd145B-j8or8Ee3RTQ1uka_H7vGv-Qc7vMjghno7G5MXjehWsdoeLrpvLF4DLYOVor4i9_7LPciobBojALr8vcGUVv0rsbDbdFkqCgwpHcrGNw03dXBkLfPkJr42G7oooHrkrvLty5PDsfW63zrcCFQQxHKqhC1SgDsdTkFOL4NR2QmSMwpGfelUcDzZ15zC9s10Mb4hQNhe9KwuzXGyxrVTJKXuwNz_4dtI77YiejcLA7VZP_V2Yyk2Jkof8lDNH79R_Qsd55WiNR2-8E4lvDJzVY_aIkl44ZaOgwJ6wCZRP2XZ7ROGtyCts8jD4tmfskwedE-jcg85HoHMEnRPovAGde9Cfs-Ov89Xn_bCtyhFWaM7VockSyr4vEhtJq-RaKyVknMmZQetPgCikNipKRaJTNO9nqSwyCSJWOtUWxfFRvGDTclPCS8aliYxNihjwXC1lFmkZ41DWrjWaxaDEK_bByySn_1mVe5JtFGAuchRg3ggwRwHu3Kfza_awX5xv2LS-uoa3aF3W-l2L-V_8RG_8
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+Meets+Medical+Imaging&rft.au=Firat%2C+Orhan&rft.au=Aksan%2C+Emre&rft.au=Oztekin%2C+Ilke&rft.au=Yarman+Vural%2C+Fatos+T.&rft.atitle=Learning+Deep+Temporal+Representations+for+fMRI+Brain+Decoding&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319279282&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=25&rft.epage=34&rft_id=info:doi/10.1007%2F978-3-319-27929-9_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon