Mixed Integer Linear Programming Models for Combinatorial Optimization Problems

This chapter provides an insight into mixed integer linear programming (MILP) modeling of combinatorial optimization problems. First, introductory MILP models are recalled together with general modeling techniques; then more or less standard MILP formulations of several combinatorial optimization pr...

Full description

Saved in:
Bibliographic Details
Published inConcepts of Combinatorial Optimization pp. 101 - 133
Main Author Della Croce, Frédérico
Format Book Chapter
LanguageEnglish
Published Hoboken, NJ, USA John Wiley & Sons, Inc 10.07.2014
Subjects
Online AccessGet full text
ISBN1848216564
9781848216563
DOI10.1002/9781119005216.ch5

Cover

Abstract This chapter provides an insight into mixed integer linear programming (MILP) modeling of combinatorial optimization problems. First, introductory MILP models are recalled together with general modeling techniques; then more or less standard MILP formulations of several combinatorial optimization problems are discussed. The chapter focuses on several modeling tricks that enable generation of linear models in the presence of special types of non‐linear expressions or in the presence of logic conditions between real/integer variables and/or between binary variables. Typically, a MILP model is considered “good” if its continuous linear programming relaxation is sufficiently tight, that is the optimal solution value of the continuous linear programming relaxation is sufficiently close to the optimal solution value of the considered problem.
AbstractList This chapter provides an insight into mixed integer linear programming (MILP) modeling of combinatorial optimization problems. First, introductory MILP models are recalled together with general modeling techniques; then more or less standard MILP formulations of several combinatorial optimization problems are discussed. The chapter focuses on several modeling tricks that enable generation of linear models in the presence of special types of non‐linear expressions or in the presence of logic conditions between real/integer variables and/or between binary variables. Typically, a MILP model is considered “good” if its continuous linear programming relaxation is sufficiently tight, that is the optimal solution value of the continuous linear programming relaxation is sufficiently close to the optimal solution value of the considered problem.
Author Della Croce, Frédérico
Author_xml – sequence: 1
  givenname: Frédérico
  surname: Della Croce
  fullname: Della Croce, Frédérico
BookMark eNptkM1KAzEUhSMqaGsfwF1eYGpuMvlbSlFbaKkLXQ_JTFKDM0mZDKh9eqfopuLici-X8x04Z4IuYooOoVsgcyCE3mmpAEATwimIef3Gz9Ds5HeOJqBKNV5clFdolnOwhAqgRAh5jbab8OkavIqD27ker0N0psfPfdr1putC3OFNalybsU89XqTOhmiG1AfT4u1-CF04mCGkeCRs67p8gy69abOb_e4pen18eFksi_X2abW4XxeZMu4LS0GXxFMtgBtQQDmVJZF1rWpdM1BWGa9laZWzlDW25FIrorSyjAKTXrApKn58P0LrvipnU3rP1Uny6hD21dhItW_8qId_9ECqY4t_uCMzDvsGIYFlmg
ContentType Book Chapter
Copyright Copyright © 2014 John Wiley & Sons, Inc.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Inc.
DOI 10.1002/9781119005216.ch5
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781119005216
1119005213
Editor Paschos, Vangelis Th
Editor_xml – sequence: 1
  givenname: Vangelis Th
  surname: Paschos
  fullname: Paschos, Vangelis Th
EndPage 133
ExternalDocumentID 10.1002/9781119005216.ch5
Genre chapter
GroupedDBID 20A
38.
3XM
AABBV
ABARN
ABIAV
ABQPQ
ABQPW
ACIQC
ACLGV
ADVEM
ADZGD
AERYV
AFLZI
AFOJC
AJFER
ALMA_UNASSIGNED_HOLDINGS
ALTAS
ASGYQ
ASVIU
AZZ
BBABE
CZZ
GEOUK
IEZ
IPJKO
IVUIE
JFSCD
JP0
KKBTI
LPRNP
LQKAK
LWYJN
LYPXV
MYL
OTAXI
PLCCB
PQEST
PQQKQ
PQUKI
UZ6
W1A
YPLAZ
ZEEST
ID FETCH-LOGICAL-s235f-b21940f29615a1812527407cc8c9c318b8af974b8eb23db457980898b32137f63
ISBN 1848216564
9781848216563
IngestDate Wed Nov 27 04:55:34 EST 2019
Thu Jun 02 19:19:16 EDT 2022
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s235f-b21940f29615a1812527407cc8c9c318b8af974b8eb23db457980898b32137f63
PageCount 32
ParticipantIDs wiley_ebooks_10_1002_9781119005216_ch5_ch5
PublicationCentury 2000
PublicationDate 2014-07-10
PublicationDateYYYYMMDD 2014-07-10
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-10
  day: 10
PublicationDecade 2010
PublicationPlace Hoboken, NJ, USA
PublicationPlace_xml – name: Hoboken, NJ, USA
PublicationTitle Concepts of Combinatorial Optimization
PublicationYear 2014
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
SSID ssib026120667
ssib026134281
ssib022009661
ssj0001407707
Score 1.4432602
Snippet This chapter provides an insight into mixed integer linear programming (MILP) modeling of combinatorial optimization problems. First, introductory MILP models...
SourceID wiley
SourceType Enrichment Source
Publisher
StartPage 101
SubjectTerms combinatorial optimization problems
general modeling techniques
integer linear programming
mixed integer linear programming (MILP)
Title Mixed Integer Linear Programming Models for Combinatorial Optimization Problems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119005216.ch5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aL-rFFXdyEA_K6EySmWTORRHB5aDgrUwyCQraFq0g_nrfS8ZZrAh66LQd0rTJl74t73shZF8YZkpRuigvWBEJUGmRMiKOWJm7lJeZSDmykS-vsvM7cXGf3jfH3Hl2yUQfm48feSX_QRXuAa7Ikv0DsnWncANeA75wBYTh-s347YZZQ12BQDj0qRjwrwYPF_1nDIBfgxh4rviVtaGKWU5HfVRXwV4NO-RleAJhOGovnsvHd1v6aCGSgsFfxXI_NyGV6xmDC3iE2pMv5fDLd-Mn8LSaTmghERizrJJMvdifzt3pJmgGJxR8RMWwiA9vCcKkClEEnZqEYhdT4jqUf8U-EjBMkEecHZuHtNFNdcbgL61nyaxUokfmQJGf1qEahts-WUPaxVJpmNDbes_B9UqagBy4tjKWocxAGJCoaoLVA_zaFo_ZydTP6Ho33jy5XSKLSFmhyCWB0SyTGTtcIQutUpOr5NpDSitIaYCUtiClAVIKkNIOpLQNKf2CdI3cnZ3e9s-j6jCN6JXx1EUaVJOIHcvBhC3QrEuZhBEbo0xuQLBrVTjwLbWymvFSi1TmKla50pwlXLqMr5PecDS0G4TiXCirCmkdB3s2VkY5K3MtM8OVscUmOfQzMfD7_a-DUBmbDTpTNoApw8cmOeg07jb6eBz7huPSbf2l120y3yzoHdKbvLzZXbAeJ3qvWiefkkVfVw
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Concepts+of+Combinatorial+Optimization&rft.au=Della+Croce%2C+Fr%C3%A9d%C3%A9rico&rft.atitle=Mixed+Integer+Linear+Programming+Models+for+Combinatorial+Optimization+Problems&rft.date=2014-07-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781848216563&rft.spage=101&rft.epage=133&rft_id=info:doi/10.1002%2F9781119005216.ch5&rft.externalDocID=10.1002%2F9781119005216.ch5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781848216563/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781848216563/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781848216563/sc.gif&client=summon&freeimage=true