Mixed Integer Linear Programming Models for Combinatorial Optimization Problems
This chapter provides an insight into mixed integer linear programming (MILP) modeling of combinatorial optimization problems. First, introductory MILP models are recalled together with general modeling techniques; then more or less standard MILP formulations of several combinatorial optimization pr...
Saved in:
Published in | Concepts of Combinatorial Optimization pp. 101 - 133 |
---|---|
Main Author | |
Format | Book Chapter |
Language | English |
Published |
Hoboken, NJ, USA
John Wiley & Sons, Inc
10.07.2014
|
Subjects | |
Online Access | Get full text |
ISBN | 1848216564 9781848216563 |
DOI | 10.1002/9781119005216.ch5 |
Cover
Abstract | This chapter provides an insight into mixed integer linear programming (MILP) modeling of combinatorial optimization problems. First, introductory MILP models are recalled together with general modeling techniques; then more or less standard MILP formulations of several combinatorial optimization problems are discussed. The chapter focuses on several modeling tricks that enable generation of linear models in the presence of special types of non‐linear expressions or in the presence of logic conditions between real/integer variables and/or between binary variables. Typically, a MILP model is considered “good” if its continuous linear programming relaxation is sufficiently tight, that is the optimal solution value of the continuous linear programming relaxation is sufficiently close to the optimal solution value of the considered problem. |
---|---|
AbstractList | This chapter provides an insight into mixed integer linear programming (MILP) modeling of combinatorial optimization problems. First, introductory MILP models are recalled together with general modeling techniques; then more or less standard MILP formulations of several combinatorial optimization problems are discussed. The chapter focuses on several modeling tricks that enable generation of linear models in the presence of special types of non‐linear expressions or in the presence of logic conditions between real/integer variables and/or between binary variables. Typically, a MILP model is considered “good” if its continuous linear programming relaxation is sufficiently tight, that is the optimal solution value of the continuous linear programming relaxation is sufficiently close to the optimal solution value of the considered problem. |
Author | Della Croce, Frédérico |
Author_xml | – sequence: 1 givenname: Frédérico surname: Della Croce fullname: Della Croce, Frédérico |
BookMark | eNptkM1KAzEUhSMqaGsfwF1eYGpuMvlbSlFbaKkLXQ_JTFKDM0mZDKh9eqfopuLici-X8x04Z4IuYooOoVsgcyCE3mmpAEATwimIef3Gz9Ds5HeOJqBKNV5clFdolnOwhAqgRAh5jbab8OkavIqD27ker0N0psfPfdr1putC3OFNalybsU89XqTOhmiG1AfT4u1-CF04mCGkeCRs67p8gy69abOb_e4pen18eFksi_X2abW4XxeZMu4LS0GXxFMtgBtQQDmVJZF1rWpdM1BWGa9laZWzlDW25FIrorSyjAKTXrApKn58P0LrvipnU3rP1Uny6hD21dhItW_8qId_9ECqY4t_uCMzDvsGIYFlmg |
ContentType | Book Chapter |
Copyright | Copyright © 2014 John Wiley & Sons, Inc. |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Inc. |
DOI | 10.1002/9781119005216.ch5 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781119005216 1119005213 |
Editor | Paschos, Vangelis Th |
Editor_xml | – sequence: 1 givenname: Vangelis Th surname: Paschos fullname: Paschos, Vangelis Th |
EndPage | 133 |
ExternalDocumentID | 10.1002/9781119005216.ch5 |
Genre | chapter |
GroupedDBID | 20A 38. 3XM AABBV ABARN ABIAV ABQPQ ABQPW ACIQC ACLGV ADVEM ADZGD AERYV AFLZI AFOJC AJFER ALMA_UNASSIGNED_HOLDINGS ALTAS ASGYQ ASVIU AZZ BBABE CZZ GEOUK IEZ IPJKO IVUIE JFSCD JP0 KKBTI LPRNP LQKAK LWYJN LYPXV MYL OTAXI PLCCB PQEST PQQKQ PQUKI UZ6 W1A YPLAZ ZEEST |
ID | FETCH-LOGICAL-s235f-b21940f29615a1812527407cc8c9c318b8af974b8eb23db457980898b32137f63 |
ISBN | 1848216564 9781848216563 |
IngestDate | Wed Nov 27 04:55:34 EST 2019 Thu Jun 02 19:19:16 EDT 2022 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s235f-b21940f29615a1812527407cc8c9c318b8af974b8eb23db457980898b32137f63 |
PageCount | 32 |
ParticipantIDs | wiley_ebooks_10_1002_9781119005216_ch5_ch5 |
PublicationCentury | 2000 |
PublicationDate | 2014-07-10 |
PublicationDateYYYYMMDD | 2014-07-10 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, NJ, USA |
PublicationPlace_xml | – name: Hoboken, NJ, USA |
PublicationTitle | Concepts of Combinatorial Optimization |
PublicationYear | 2014 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
SSID | ssib026120667 ssib026134281 ssib022009661 ssj0001407707 |
Score | 1.4432602 |
Snippet | This chapter provides an insight into mixed integer linear programming (MILP) modeling of combinatorial optimization problems. First, introductory MILP models... |
SourceID | wiley |
SourceType | Enrichment Source Publisher |
StartPage | 101 |
SubjectTerms | combinatorial optimization problems general modeling techniques integer linear programming mixed integer linear programming (MILP) |
Title | Mixed Integer Linear Programming Models for Combinatorial Optimization Problems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119005216.ch5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aL-rFFXdyEA_K6EySmWTORRHB5aDgrUwyCQraFq0g_nrfS8ZZrAh66LQd0rTJl74t73shZF8YZkpRuigvWBEJUGmRMiKOWJm7lJeZSDmykS-vsvM7cXGf3jfH3Hl2yUQfm48feSX_QRXuAa7Ikv0DsnWncANeA75wBYTh-s347YZZQ12BQDj0qRjwrwYPF_1nDIBfgxh4rviVtaGKWU5HfVRXwV4NO-RleAJhOGovnsvHd1v6aCGSgsFfxXI_NyGV6xmDC3iE2pMv5fDLd-Mn8LSaTmghERizrJJMvdifzt3pJmgGJxR8RMWwiA9vCcKkClEEnZqEYhdT4jqUf8U-EjBMkEecHZuHtNFNdcbgL61nyaxUokfmQJGf1qEahts-WUPaxVJpmNDbes_B9UqagBy4tjKWocxAGJCoaoLVA_zaFo_ZydTP6Ho33jy5XSKLSFmhyCWB0SyTGTtcIQutUpOr5NpDSitIaYCUtiClAVIKkNIOpLQNKf2CdI3cnZ3e9s-j6jCN6JXx1EUaVJOIHcvBhC3QrEuZhBEbo0xuQLBrVTjwLbWymvFSi1TmKla50pwlXLqMr5PecDS0G4TiXCirCmkdB3s2VkY5K3MtM8OVscUmOfQzMfD7_a-DUBmbDTpTNoApw8cmOeg07jb6eBz7huPSbf2l120y3yzoHdKbvLzZXbAeJ3qvWiefkkVfVw |
linkProvider | ProQuest Ebooks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Concepts+of+Combinatorial+Optimization&rft.au=Della+Croce%2C+Fr%C3%A9d%C3%A9rico&rft.atitle=Mixed+Integer+Linear+Programming+Models+for+Combinatorial+Optimization+Problems&rft.date=2014-07-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781848216563&rft.spage=101&rft.epage=133&rft_id=info:doi/10.1002%2F9781119005216.ch5&rft.externalDocID=10.1002%2F9781119005216.ch5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781848216563/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781848216563/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781848216563/sc.gif&client=summon&freeimage=true |