Generalised Entropy Maximisation and Queues with Bursty and/or Heavy Tails

An exposition of the ‘extensive’ (EME) and ‘non-extensive’ (NME) maximum entropy formalisms is undertaken in conjunction with their applicability into the analysis of queues with bursty and/or heavy tails that are often observed in performance evaluation studies of heterogeneous networks and Interne...

Full description

Saved in:
Bibliographic Details
Published inNetwork Performance Engineering pp. 357 - 392
Main Authors Kouvatsos, Demetres D., Assi, Salam A.
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2011
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3642027415
9783642027413
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-02742-0_17

Cover

Loading…
Abstract An exposition of the ‘extensive’ (EME) and ‘non-extensive’ (NME) maximum entropy formalisms is undertaken in conjunction with their applicability into the analysis of queues with bursty and/or heavy tails that are often observed in performance evaluation studies of heterogeneous networks and Internet exhibiting traffic burstiness, self-similarity and long-range dependence (LRD). The credibility of these formalisms, as methods of inductive inference, for the study of physical systems with both short-range and long-range interactions is explored in terms of four potential consistency axioms. Focusing on stable single server queues, it is shown that the EME and NME state probabilities are characterized by generalised types of modified geometric and Zipf-Mandelbrot distributions depicting, respectively, bursty generalized exponential and/or heavy tails with asymptotic power law behaviour. Numerical experiments are included to highlight the credibility of the maximum entropy solutions and assess the combined impact of traffic burstiness and self-similarity on the performance of the queue.
AbstractList An exposition of the ‘extensive’ (EME) and ‘non-extensive’ (NME) maximum entropy formalisms is undertaken in conjunction with their applicability into the analysis of queues with bursty and/or heavy tails that are often observed in performance evaluation studies of heterogeneous networks and Internet exhibiting traffic burstiness, self-similarity and long-range dependence (LRD). The credibility of these formalisms, as methods of inductive inference, for the study of physical systems with both short-range and long-range interactions is explored in terms of four potential consistency axioms. Focusing on stable single server queues, it is shown that the EME and NME state probabilities are characterized by generalised types of modified geometric and Zipf-Mandelbrot distributions depicting, respectively, bursty generalized exponential and/or heavy tails with asymptotic power law behaviour. Numerical experiments are included to highlight the credibility of the maximum entropy solutions and assess the combined impact of traffic burstiness and self-similarity on the performance of the queue.
Author Kouvatsos, Demetres D.
Assi, Salam A.
Author_xml – sequence: 1
  givenname: Demetres D.
  surname: Kouvatsos
  fullname: Kouvatsos, Demetres D.
  email: D.Kouvatsos@Bradford.ac.uk
  organization: Networks and Performance Engineering Research Group (NetPEn), Informatics Research Institute (IRI), University of Bradford, Bradford, UK
– sequence: 2
  givenname: Salam A.
  surname: Assi
  fullname: Assi, Salam A.
  email: S.A.Assi@leeds.ac.uk
  organization: Networks and Performance Engineering Research Group (NetPEn), Informatics Research Institute (IRI), University of Bradford, Bradford, UK
BookMark eNpFkN1KAzEQRqNWcFv7Bl7kBWInm-xucqmlP0pFhHodkt1EozVbNlu1b29aBefiGzgfDMwZokFog0XoisI1BagmshKEkZLnBPLqkIpWJ2jIEjkCdooyWlJKGOPy7L-gxQBlwCAnsuLsAo1jfIM0BZMFrzJ0v7DBdnrjo23wLPRdu93jB_3tP3zUvW8D1qHBTzu7sxF_-f4V3-662O8PeNJ2eGn15x6vtd_ES3Tu9Cba8d8eoef5bD1dktXj4m56syKRStETVxaUS1c6q5umkWBSCu1KY2owhjnuBDgQNQdaamELBwU3QupcQg3O1GyE8t-7cdv58GI7Zdr2PSqanCRVKqlSTKX_1dGMOqhiP8QKWvI
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2011
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2011
DOI 10.1007/978-3-642-02742-0_17
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3642027423
9783642027420
EISSN 1611-3349
Editor Kouvatsos, Demetres D.
Editor_xml – sequence: 1
  givenname: Demetres D.
  surname: Kouvatsos
  fullname: Kouvatsos, Demetres D.
  email: d.kouvatsos@bradford.ac.uk
EndPage 392
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s198t-f65149f6feaddd90bddd8af6bbc0bb3f4f80f08c4016a8e5f054b89a290c0fbc3
ISBN 3642027415
9783642027413
ISSN 0302-9743
IngestDate Tue Jul 29 20:09:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s198t-f65149f6feaddd90bddd8af6bbc0bb3f4f80f08c4016a8e5f054b89a290c0fbc3
PageCount 36
ParticipantIDs springer_books_10_1007_978_3_642_02742_0_17
PublicationCentury 2000
PublicationDate 2011
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle A Handbook on Convergent Multi-Service Networks and Next Generation Internet
PublicationTitle Network Performance Engineering
PublicationYear 2011
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000539547
ssj0002792
Score 1.9998461
Snippet An exposition of the ‘extensive’ (EME) and ‘non-extensive’ (NME) maximum entropy formalisms is undertaken in conjunction with their applicability into the...
SourceID springer
SourceType Publisher
StartPage 357
SubjectTerms burstiness
Extensive maximum entropy (EME) formalism
fractional Brownian motion (fBm)
generalised (modified) geometric (GGeo) distribution
generalised exponential (GE) distribution
generalised Zipf-Mandelbrot (G-Z-M) distribution
heterogeneous networks
long-range dependence (LRD)
non-extensive maximum entropy formalism (NME)
performance evaluation
queueing systems
self-similarity
short-range dependence (SRD)
traffic characterisation
Title Generalised Entropy Maximisation and Queues with Bursty and/or Heavy Tails
URI http://link.springer.com/10.1007/978-3-642-02742-0_17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYuQAHxgDxY0M-cItSzBxnyYHDxoqmapuE1KHdIju1pUqsQU06Mf56Pv9IatiENC5WZUVN8j775fn5fZ8Jea_U3BgpML9lLbFA0SqVwDrlQimuMyOUsOTks_P85CKbXorLTULfsUs6Na5_3ckr-R9U0QdcLUv2HsgOf4oO_Aa-aIEw2r-C3z_TrEFwyRVw2xr2ofQ_UhccPGmzvpZd66vpjvWVtuSQ5Hg8II1J4VPDGBvJ4TgeQ0GTetEiKp3YkvYfN8mZ_Lm4CjVAbufh61rj0-ITukdrBJNO0Qkv1awsyen6JpnJxXcfulur6PbTadi4OG86Vw-W9GdL9K4mzkU4Rl6ci-hzkck_pLocbSTbd7I5PHJ2HJ4Zaxvfpb0zzq3EIveSpsHBci9nHb7V3J-jd-szEFd-4Gap25BOsdw52CJbB4UYkYeHk-nptyEbh-FZimxYqjMrq-j3n_xTWVZQ_9TC6zZt3iJiZN51y1t77C50mW2TJ5bOQi3PBAZ-Rh7o5Q552hucBoPvkMfR2HlOphH0NEBPY-gpMKYeemqhpx562_2hWVEHPHXAvyAXXyazzydpOHYjbT-WRZeaHEF0aXIDJzOfl0yhLaTJlaoZJrDJTMEMK2qszHNZaGEQ9auilPslq5lRNX9JRstmqV8RypjMtZhjUSCzrJRMFbUVH9IIonOdc_aaJL1pKjuR2qpX0YYhK17BkJUzZGUN-eZeV78ljzZDdJeMutVa7yGA7NS7gP5v5-Zozw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Network+Performance+Engineering&rft.au=Kouvatsos%2C+Demetres+D.&rft.au=Assi%2C+Salam+A.&rft.atitle=Generalised+Entropy+Maximisation+and+Queues+with+Bursty+and%2For+Heavy+Tails&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2011-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642027413&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=357&rft.epage=392&rft_id=info:doi/10.1007%2F978-3-642-02742-0_17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon