Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation

In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-sh...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision – ECCV 2022 pp. 453 - 470
Main Authors Zhang, Min, Huang, Siteng, Li, Wenbin, Wang, Donglin
Format Book Chapter
LanguageEnglish
Published Cham Springer Nature Switzerland 20.10.2022
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-shot learning (FSL) as it differs from human-annotated supervision (i.e., class labels of FSL tasks). To solve this problem, we present a plug-in Hierarchical Tree Structure-aware (HTS) method, which not only learns the relationship of FSL and pretext tasks, but more importantly, can adaptively select and aggregate feature representations generated by pretext tasks to maximize the performance of FSL tasks. A hierarchical tree constructing component and a gated selection aggregating component is introduced to construct the tree structure and find richer transferable knowledge that can rapidly adapt to novel classes with a few labeled images. Extensive experiments show that our HTS can significantly enhance multiple few-shot methods to achieve new state-of-the-art performance on four benchmark datasets. The code is available at: https://github.com/remiMZ/HTS-ECCV22.
AbstractList In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-shot learning (FSL) as it differs from human-annotated supervision (i.e., class labels of FSL tasks). To solve this problem, we present a plug-in Hierarchical Tree Structure-aware (HTS) method, which not only learns the relationship of FSL and pretext tasks, but more importantly, can adaptively select and aggregate feature representations generated by pretext tasks to maximize the performance of FSL tasks. A hierarchical tree constructing component and a gated selection aggregating component is introduced to construct the tree structure and find richer transferable knowledge that can rapidly adapt to novel classes with a few labeled images. Extensive experiments show that our HTS can significantly enhance multiple few-shot methods to achieve new state-of-the-art performance on four benchmark datasets. The code is available at: https://github.com/remiMZ/HTS-ECCV22.
Author Li, Wenbin
Huang, Siteng
Wang, Donglin
Zhang, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
– sequence: 2
  givenname: Siteng
  surname: Huang
  fullname: Huang, Siteng
– sequence: 3
  givenname: Wenbin
  surname: Li
  fullname: Li, Wenbin
– sequence: 4
  givenname: Donglin
  surname: Wang
  fullname: Wang, Donglin
  email: wangdonglin@westlake.edu.cn
BookMark eNo1kF1OAjEUhatiIiA78GE2UL237fTnkRAREhJNwOemDJdhFGdMO8h2XIsrc0R9Osl3kpOTb8B6dVMTYzcItwhg7pyxXHKQyAWAUhy90Gds1GHZwRPDc9ZHjcilVO6CDf4LaXusDxIEd0bJKzZK6QUAhJGIKPrsaRWJsmUbD0V7iMTHxxApm9KRL3dNm83fQknZZB9SqrZVEdqqqbOPKnx9ziqKIRa7Du6zcVlGKk_tNbvchn2i0V8O2fP0fjWZ8cXjw3wyXvCEzrbcKVyjyg3lqAvbnSnEWguz2ThhgxC5C1oVOQEikCZnNiZsUVprQTvUuZFDJn5303us6pKiXzfNa_II_seZ7-R46TsL_uTH_ziT30aiW2E
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DOI 10.1007/978-3-031-20044-1_26
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783031200441
3031200446
EISSN 1611-3349
Editor Farinella, Giovanni Maria
Avidan, Shai
Cissé, Moustapha
Brostow, Gabriel
Hassner, Tal
Editor_xml – sequence: 1
  givenname: Shai
  surname: Avidan
  fullname: Avidan, Shai
  email: avidan@eng.tau.ac.il
– sequence: 2
  givenname: Gabriel
  orcidid: 0000-0001-8472-3828
  surname: Brostow
  fullname: Brostow, Gabriel
  email: g.brostow@cs.ucl.ac.uk
– sequence: 3
  givenname: Moustapha
  surname: Cissé
  fullname: Cissé, Moustapha
  email: moustaphacisse@google.com
– sequence: 4
  givenname: Giovanni Maria
  orcidid: 0000-0002-6034-0432
  surname: Farinella
  fullname: Farinella, Giovanni Maria
  email: gfarinella@dmi.unict.it
– sequence: 5
  givenname: Tal
  orcidid: 0000-0003-2275-1406
  surname: Hassner
  fullname: Hassner, Tal
  email: talhassner@gmail.com
EndPage 470
GroupedDBID -DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-s198t-941b1457e516c8311c2b627dd928a2259a64c5e0110e6e97d7af1388806916573
ISBN 3031200438
9783031200434
ISSN 0302-9743
IngestDate Tue Oct 01 19:40:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s198t-941b1457e516c8311c2b627dd928a2259a64c5e0110e6e97d7af1388806916573
Notes Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-20044-1_26.
PageCount 18
ParticipantIDs springer_books_10_1007_978_3_031_20044_1_26
PublicationCentury 2000
PublicationDate 20221020
PublicationDateYYYYMMDD 2022-10-20
PublicationDate_xml – month: 10
  year: 2022
  text: 20221020
  day: 20
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XX
PublicationTitle Computer Vision – ECCV 2022
PublicationYear 2022
Publisher Springer Nature Switzerland
Publisher_xml – name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002731112
ssj0002792
Score 2.4084542
Snippet In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g.,...
SourceID springer
SourceType Publisher
StartPage 453
SubjectTerms Few-shot learning
Hierarchical tree structure
Pretext tasks
Title Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation
URI http://link.springer.com/10.1007/978-3-031-20044-1_26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWeql6KH2pD1r5UE6Rq8RxnOTQw2pZtEWAKgELtyhOvLCHZiU2dCX-Rv9Af0t_GTO281iWC71EkWU5ycyXGc_ThHyF8UQmRcRKyTUTcVkylYLNM4t8Jf185pcCa4ePT-TkXBxeRpeDwZ9e1tJtrb4Vd4_WlfwPV2EM-IpVsk_gbLsoDMA98BeuwGG4Ptj8rrtZbV8Bdx6DNzXl4V6TthB649Fo6nGft4nDrVf4eF51fGw8xbCuU1-YmGOi-xe6Ut3UCzdzf4E1v9Uaym405iJiD9rbG82GK0wkO9Ardnq9qL0fvzAjyJy7iRlJFmu_5_neiO8N_ckci5_NWSwAkysw_K86mCD99PL7kQtxnCxqkznmtV_thFLfawHMB3HP_Q2vJaZk4yqnq3l9Z8ub1wxcULABctw5PF2hFwhxMIOsXNRWbkvsxhja7qdOFoso7Kl1Yc8n2dAY_SQReJjBl2BBxuUW2YpTEJrPhuPDo2nruIP9HuiHrkcZdmC0oSr7VlhA1Lx1Yls8dV_RK9587JEb4XizyznbIS-w8oViSQpQ-BUZ6Oo1eensFOoIvoShhgnN2BvyE4FAHwCBNkCgBgh0HQgUgPDvbx8EtAeCt-T8YHw2mjB3WAdbBmlSs1QEKhBRrKNAFgmQqOBKcvj3U57koDTSXIoi0rjd1FKncRnnsyBMQH1IsFCiOHxHtqtFpd8TqpNQz8CywAi1UDJOCx_saB1qpThGoT8Qr6FShr_fMmt6bwNNszADmmaGphnS9OOTZn8izzu47pJtoJv-DNvOWn1xQLgHuaJ08w
link.rule.ids 782,783,787,796,27939
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+%E2%80%93+ECCV+2022&rft.au=Zhang%2C+Min&rft.au=Huang%2C+Siteng&rft.au=Li%2C+Wenbin&rft.au=Wang%2C+Donglin&rft.atitle=Tree+Structure-Aware+Few-Shot+Image+Classification+via%C2%A0Hierarchical+Aggregation&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-10-20&rft.pub=Springer+Nature+Switzerland&rft.isbn=9783031200434&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=453&rft.epage=470&rft_id=info:doi/10.1007%2F978-3-031-20044-1_26
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon