Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation
In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-sh...
Saved in:
Published in | Computer Vision – ECCV 2022 pp. 453 - 470 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer Nature Switzerland
20.10.2022
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-shot learning (FSL) as it differs from human-annotated supervision (i.e., class labels of FSL tasks). To solve this problem, we present a plug-in Hierarchical Tree Structure-aware (HTS) method, which not only learns the relationship of FSL and pretext tasks, but more importantly, can adaptively select and aggregate feature representations generated by pretext tasks to maximize the performance of FSL tasks. A hierarchical tree constructing component and a gated selection aggregating component is introduced to construct the tree structure and find richer transferable knowledge that can rapidly adapt to novel classes with a few labeled images. Extensive experiments show that our HTS can significantly enhance multiple few-shot methods to achieve new state-of-the-art performance on four benchmark datasets. The code is available at: https://github.com/remiMZ/HTS-ECCV22. |
---|---|
AbstractList | In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-shot learning (FSL) as it differs from human-annotated supervision (i.e., class labels of FSL tasks). To solve this problem, we present a plug-in Hierarchical Tree Structure-aware (HTS) method, which not only learns the relationship of FSL and pretext tasks, but more importantly, can adaptively select and aggregate feature representations generated by pretext tasks to maximize the performance of FSL tasks. A hierarchical tree constructing component and a gated selection aggregating component is introduced to construct the tree structure and find richer transferable knowledge that can rapidly adapt to novel classes with a few labeled images. Extensive experiments show that our HTS can significantly enhance multiple few-shot methods to achieve new state-of-the-art performance on four benchmark datasets. The code is available at: https://github.com/remiMZ/HTS-ECCV22. |
Author | Li, Wenbin Huang, Siteng Wang, Donglin Zhang, Min |
Author_xml | – sequence: 1 givenname: Min surname: Zhang fullname: Zhang, Min – sequence: 2 givenname: Siteng surname: Huang fullname: Huang, Siteng – sequence: 3 givenname: Wenbin surname: Li fullname: Li, Wenbin – sequence: 4 givenname: Donglin surname: Wang fullname: Wang, Donglin email: wangdonglin@westlake.edu.cn |
BookMark | eNo1kF1OAjEUhatiIiA78GE2UL237fTnkRAREhJNwOemDJdhFGdMO8h2XIsrc0R9Osl3kpOTb8B6dVMTYzcItwhg7pyxXHKQyAWAUhy90Gds1GHZwRPDc9ZHjcilVO6CDf4LaXusDxIEd0bJKzZK6QUAhJGIKPrsaRWJsmUbD0V7iMTHxxApm9KRL3dNm83fQknZZB9SqrZVEdqqqbOPKnx9ziqKIRa7Du6zcVlGKk_tNbvchn2i0V8O2fP0fjWZ8cXjw3wyXvCEzrbcKVyjyg3lqAvbnSnEWguz2ThhgxC5C1oVOQEikCZnNiZsUVprQTvUuZFDJn5303us6pKiXzfNa_II_seZ7-R46TsL_uTH_ziT30aiW2E |
ContentType | Book Chapter |
Copyright | The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
Copyright_xml | – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
DOI | 10.1007/978-3-031-20044-1_26 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9783031200441 3031200446 |
EISSN | 1611-3349 |
Editor | Farinella, Giovanni Maria Avidan, Shai Cissé, Moustapha Brostow, Gabriel Hassner, Tal |
Editor_xml | – sequence: 1 givenname: Shai surname: Avidan fullname: Avidan, Shai email: avidan@eng.tau.ac.il – sequence: 2 givenname: Gabriel orcidid: 0000-0001-8472-3828 surname: Brostow fullname: Brostow, Gabriel email: g.brostow@cs.ucl.ac.uk – sequence: 3 givenname: Moustapha surname: Cissé fullname: Cissé, Moustapha email: moustaphacisse@google.com – sequence: 4 givenname: Giovanni Maria orcidid: 0000-0002-6034-0432 surname: Farinella fullname: Farinella, Giovanni Maria email: gfarinella@dmi.unict.it – sequence: 5 givenname: Tal orcidid: 0000-0003-2275-1406 surname: Hassner fullname: Hassner, Tal email: talhassner@gmail.com |
EndPage | 470 |
GroupedDBID | -DT -~X 29L 2HA 2HV ACGFS ADCXD ALMA_UNASSIGNED_HOLDINGS EJD F5P LAS LDH P2P RSU ~02 |
ID | FETCH-LOGICAL-s198t-941b1457e516c8311c2b627dd928a2259a64c5e0110e6e97d7af1388806916573 |
ISBN | 3031200438 9783031200434 |
ISSN | 0302-9743 |
IngestDate | Tue Oct 01 19:40:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s198t-941b1457e516c8311c2b627dd928a2259a64c5e0110e6e97d7af1388806916573 |
Notes | Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-20044-1_26. |
PageCount | 18 |
ParticipantIDs | springer_books_10_1007_978_3_031_20044_1_26 |
PublicationCentury | 2000 |
PublicationDate | 20221020 |
PublicationDateYYYYMMDD | 2022-10-20 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221020 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XX |
PublicationTitle | Computer Vision – ECCV 2022 |
PublicationYear | 2022 |
Publisher | Springer Nature Switzerland |
Publisher_xml | – name: Springer Nature Switzerland |
RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002731112 ssj0002792 |
Score | 2.4084542 |
Snippet | In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g.,... |
SourceID | springer |
SourceType | Publisher |
StartPage | 453 |
SubjectTerms | Few-shot learning Hierarchical tree structure Pretext tasks |
Title | Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation |
URI | http://link.springer.com/10.1007/978-3-031-20044-1_26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWeql6KH2pD1r5UE6Rq8RxnOTQw2pZtEWAKgELtyhOvLCHZiU2dCX-Rv9Af0t_GTO281iWC71EkWU5ycyXGc_ThHyF8UQmRcRKyTUTcVkylYLNM4t8Jf185pcCa4ePT-TkXBxeRpeDwZ9e1tJtrb4Vd4_WlfwPV2EM-IpVsk_gbLsoDMA98BeuwGG4Ptj8rrtZbV8Bdx6DNzXl4V6TthB649Fo6nGft4nDrVf4eF51fGw8xbCuU1-YmGOi-xe6Ut3UCzdzf4E1v9Uaym405iJiD9rbG82GK0wkO9Ardnq9qL0fvzAjyJy7iRlJFmu_5_neiO8N_ckci5_NWSwAkysw_K86mCD99PL7kQtxnCxqkznmtV_thFLfawHMB3HP_Q2vJaZk4yqnq3l9Z8ub1wxcULABctw5PF2hFwhxMIOsXNRWbkvsxhja7qdOFoso7Kl1Yc8n2dAY_SQReJjBl2BBxuUW2YpTEJrPhuPDo2nruIP9HuiHrkcZdmC0oSr7VlhA1Lx1Yls8dV_RK9587JEb4XizyznbIS-w8oViSQpQ-BUZ6Oo1eensFOoIvoShhgnN2BvyE4FAHwCBNkCgBgh0HQgUgPDvbx8EtAeCt-T8YHw2mjB3WAdbBmlSs1QEKhBRrKNAFgmQqOBKcvj3U57koDTSXIoi0rjd1FKncRnnsyBMQH1IsFCiOHxHtqtFpd8TqpNQz8CywAi1UDJOCx_saB1qpThGoT8Qr6FShr_fMmt6bwNNszADmmaGphnS9OOTZn8izzu47pJtoJv-DNvOWn1xQLgHuaJ08w |
link.rule.ids | 782,783,787,796,27939 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+%E2%80%93+ECCV+2022&rft.au=Zhang%2C+Min&rft.au=Huang%2C+Siteng&rft.au=Li%2C+Wenbin&rft.au=Wang%2C+Donglin&rft.atitle=Tree+Structure-Aware+Few-Shot+Image+Classification+via%C2%A0Hierarchical+Aggregation&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-10-20&rft.pub=Springer+Nature+Switzerland&rft.isbn=9783031200434&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=453&rft.epage=470&rft_id=info:doi/10.1007%2F978-3-031-20044-1_26 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |