Learning Accurate Cutset Networks by Exploiting Decomposability

The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks (CNets) have recently been introduced as models embedding Pearl’s cutset conditioning algorithm in the form of weighted probabilistic model...

Full description

Saved in:
Bibliographic Details
Published inAIIA 2015 Advances in Artificial Intelligence pp. 221 - 232
Main Authors Di Mauro, Nicola, Vergari, Antonio, Esposito, Floriana
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2015
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN331924308X
9783319243085
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-24309-2_17

Cover

Abstract The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks (CNets) have recently been introduced as models embedding Pearl’s cutset conditioning algorithm in the form of weighted probabilistic model trees with tree-structured models as leaves. Learning the structure of CNets has been tackled as a greedy search leveraging heuristics from decision tree learning. Even if efficient, the learned models are far from being accurate in terms of likelihood. Here, we exploit the decomposable score of CNets to learn their structure and parameters by directly maximizing the likelihood, including the BIC criterion and informative priors on smoothing parameters. In addition, we show how to create mixtures of CNets by adopting a well known bagging method from the discriminative framework as an effective and cheap alternative to the classical EM. We compare our algorithms against the original variants on a set of standard benchmarks for graphical model structure learning, empirically proving our claims.
AbstractList The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks (CNets) have recently been introduced as models embedding Pearl’s cutset conditioning algorithm in the form of weighted probabilistic model trees with tree-structured models as leaves. Learning the structure of CNets has been tackled as a greedy search leveraging heuristics from decision tree learning. Even if efficient, the learned models are far from being accurate in terms of likelihood. Here, we exploit the decomposable score of CNets to learn their structure and parameters by directly maximizing the likelihood, including the BIC criterion and informative priors on smoothing parameters. In addition, we show how to create mixtures of CNets by adopting a well known bagging method from the discriminative framework as an effective and cheap alternative to the classical EM. We compare our algorithms against the original variants on a set of standard benchmarks for graphical model structure learning, empirically proving our claims.
Author Esposito, Floriana
Vergari, Antonio
Di Mauro, Nicola
Author_xml – sequence: 1
  givenname: Nicola
  surname: Di Mauro
  fullname: Di Mauro, Nicola
  email: nicola.dimauro@uniba.it
  organization: University of Bari “Aldo Moro”, Bari, Italy
– sequence: 2
  givenname: Antonio
  surname: Vergari
  fullname: Vergari, Antonio
  email: antonio.vergari@uniba.it
  organization: University of Bari “Aldo Moro”, Bari, Italy
– sequence: 3
  givenname: Floriana
  surname: Esposito
  fullname: Esposito, Floriana
  email: floriana.esposito@uniba.it
  organization: University of Bari “Aldo Moro”, Bari, Italy
BookMark eNpFkN1KAzEQhaNWsK19Ay_2BaKZTDY_V1Jq_YGiNwrehWSblbV1UzYptm_vtgrezIEzw2HONyKDNraBkCtg18CYujFKU6QIhnKBrJ8W1AkZYe8cDX1KhiABKKIwZ_8L_T4gQ4aMU6MEXpBJSp-MMSi10LwckttFcF3btB_FtKq2ncuhmG1zCrl4Dvk7dqtU-H0x323WscmHs7tQxa9NTM436ybvL8l57dYpTP50TN7u56-zR7p4eXiaTRc0gdGZSgNLLHmlAvraM2V07Y02goHjXAshZKUU9DWErKXXtZTLquSclah17ZYOx4T_5qZN178ROutjXCULzB742J6PRduXtkcc9sAHfwD5_lVT
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DOI 10.1007/978-3-319-24309-2_17
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3319243098
9783319243092
EISSN 1611-3349
Editor Gavanelli, Marco
Lamma, Evelina
Riguzzi, Fabrizio
Editor_xml – sequence: 1
  givenname: Marco
  surname: Gavanelli
  fullname: Gavanelli, Marco
  email: marco.gavanelli@unife.it
– sequence: 2
  givenname: Evelina
  surname: Lamma
  fullname: Lamma, Evelina
  email: evelina.lamma@unife.it
– sequence: 3
  givenname: Fabrizio
  surname: Riguzzi
  fullname: Riguzzi, Fabrizio
  email: fabrizio.riguzzi@unife.it
EndPage 232
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s198t-691d352c7e3bfb0798fb989401a2284446c77109846f6b8f66dc52205388fada3
IEDL.DBID SBO
ISBN 331924308X
9783319243085
ISSN 0302-9743
IngestDate Tue Jul 29 20:14:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-s198t-691d352c7e3bfb0798fb989401a2284446c77109846f6b8f66dc52205388fada3
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_319_24309_2_17
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle XIVth International Conference of the Italian Association for Artificial Intelligence, Ferrara, Italy, September 23-25, 2015, Proceedings
PublicationTitle AIIA 2015 Advances in Artificial Intelligence
PublicationYear 2015
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Madras, Indian Institute of Technology, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0001584825
ssj0002792
Score 1.833305
Snippet The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks...
SourceID springer
SourceType Publisher
StartPage 221
SubjectTerms Arithmetic Circuit
Bayesian Information Criterion
Bayesian Network
Markov Network
Probabilistic Graphical Model
Title Learning Accurate Cutset Networks by Exploiting Decomposability
URI http://link.springer.com/10.1007/978-3-319-24309-2_17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MeVEP06n4mxy8SUa7pG16Ep2OITgPOtytNGkiImxg28P8631JWzfUy46FQMkj5H0v7_u-B3AZKGl8I_vUpCKkXKmACkTNNJKaxQIhAXcq18dxOJrwh2kwbUHYaGEc271pSbqbuhG7VX18q7npc9cWSPxoAzaZ8Lgtup5vn5ZvK5hVxdJzz7MmeVU3oU8RP9vZDozZyoN5onbh-fkOVvR1__3yT8fUJaJhB16bLVT8k49eWcie-vrl7rj-Hndhx8oeiNUjYKj3oKVnXeg0Qx9IfQd0YXvFwXAfrmt_1jdyo1RpbSfIoCxyXZBxxS_PiVwQR_R7twRrcqctiX1eGfsWiwOYDO9fBiNaz2SguR-LgoaxnyFmU5Fm0kgvioWR1sPd89M-ZjosLlVk6Z0Ia0wohQnDTAVWzMuEMGmWskNoz-YzfQREMa3xHOOdYhjHujL2mU7jzCBCEVJyfgxXTZASW3HkSWOxjGFKWIJhSlyYEhumk7VWn8IWIp-geks5g3bxWepzRBeFvHBH6RuMqrx7
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VMvAxFAqIbzywIVdJnA9nQlCoCrRloBXdotixEUJqJZIM5ddzThpaAUvHSJEin5y7d773ngEuPSm0rYVDdcx96krpUY6omQZCsZAjJHALlWt_4HdH7uPYG9fAr7QwBdu9GkkWmboSu5VzfKO5cdxiLBDZwRqsIxywzA_5cvu8OFvBqsoXnnuWMckrpwkORfxs7nZgzHQezOJzF56fZ29JX_ffJ_9MTItC1GnAa7WEkn_y0coz0ZJfv9wdV1_jDmwb2QMxegQM9S7U1KQJjerSBzLPAU3YWnIw3IPruT_rG7mRMje2E6SdZ6nKyKDkl6dEzEhB9Hs3BGtypwyJfVoa-2azfRh17oftLp3fyUBTO-QZ9UM7QcwmA8WEFlYQci2Mh7tlxw5WOmwuZWDonQhrtC-49v1EekbMyzjXcRKzA6hPphN1CEQypXAfY07RzMW-MrSZisNEI0LhQrjuEVxVQYpMx5FGlcUyhiliEYYpKsIUmTAdr_T2BWx0h_1e1HsYPJ3AJqIgrzxXOYV69pmrM0QamTgvttU3Zzu_WQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06QdSH6VT8Ng--Sbe2Sdv0SXRzzK8p6GBvoUkTEaET2z7MX-9NP9xQX8THQqHkNuSem3vOuQideFJoRwvX0hHzLSqlZzFAzVYgFAkZQAJaqFzvhv5gRK_H3nhOC1Ow3euWZKlpMC5NSdZ5i3Xd1e-UPX2jv3Fp0SLgTrCIlqjBB7CnHy_uZ_cskGHZzH_PNoZ5ZWfBtQBLmzkPhJgqhNiscuT5evbmtHa_ffJH97RISv0mkvVySi7KazvPRFt-fHN6_N9619GakUNgo1OAX7CBFlTSQs16GASuzoYWWp1zNtxEZ5Vv6zM-lzI3dhS4m2epyvCw5J2nWExxQQB8McRr3FOG3D4pDX-z6RYa9S-fugOrmtVgpU7IMssPnRiwnAwUEVrYQci0MN7uthO5kAGh6JSBoX0C3NG-YNr3Y-kZkS9hTEdxRLZRI5kkagdhSZSC_Q1njSYU6s3QISoKYw3IhQlB6S46rQPGTSWS8tp6GcLECYcw8SJM3IRp709vH6Plh16f314Nb_bRCoAjr7xuOUCN7D1XhwBAMnFU7LBPsyDIPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=AIIA+2015+Advances+in+Artificial+Intelligence&rft.au=Di+Mauro%2C+Nicola&rft.au=Vergari%2C+Antonio&rft.au=Esposito%2C+Floriana&rft.atitle=Learning+Accurate+Cutset+Networks+by+Exploiting+Decomposability&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319243085&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=221&rft.epage=232&rft_id=info:doi/10.1007%2F978-3-319-24309-2_17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon