Learning Accurate Cutset Networks by Exploiting Decomposability
The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks (CNets) have recently been introduced as models embedding Pearl’s cutset conditioning algorithm in the form of weighted probabilistic model...
Saved in:
Published in | AIIA 2015 Advances in Artificial Intelligence pp. 221 - 232 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
2015
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 331924308X 9783319243085 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-24309-2_17 |
Cover
Abstract | The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks (CNets) have recently been introduced as models embedding Pearl’s cutset conditioning algorithm in the form of weighted probabilistic model trees with tree-structured models as leaves. Learning the structure of CNets has been tackled as a greedy search leveraging heuristics from decision tree learning. Even if efficient, the learned models are far from being accurate in terms of likelihood. Here, we exploit the decomposable score of CNets to learn their structure and parameters by directly maximizing the likelihood, including the BIC criterion and informative priors on smoothing parameters. In addition, we show how to create mixtures of CNets by adopting a well known bagging method from the discriminative framework as an effective and cheap alternative to the classical EM. We compare our algorithms against the original variants on a set of standard benchmarks for graphical model structure learning, empirically proving our claims. |
---|---|
AbstractList | The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks (CNets) have recently been introduced as models embedding Pearl’s cutset conditioning algorithm in the form of weighted probabilistic model trees with tree-structured models as leaves. Learning the structure of CNets has been tackled as a greedy search leveraging heuristics from decision tree learning. Even if efficient, the learned models are far from being accurate in terms of likelihood. Here, we exploit the decomposable score of CNets to learn their structure and parameters by directly maximizing the likelihood, including the BIC criterion and informative priors on smoothing parameters. In addition, we show how to create mixtures of CNets by adopting a well known bagging method from the discriminative framework as an effective and cheap alternative to the classical EM. We compare our algorithms against the original variants on a set of standard benchmarks for graphical model structure learning, empirically proving our claims. |
Author | Esposito, Floriana Vergari, Antonio Di Mauro, Nicola |
Author_xml | – sequence: 1 givenname: Nicola surname: Di Mauro fullname: Di Mauro, Nicola email: nicola.dimauro@uniba.it organization: University of Bari “Aldo Moro”, Bari, Italy – sequence: 2 givenname: Antonio surname: Vergari fullname: Vergari, Antonio email: antonio.vergari@uniba.it organization: University of Bari “Aldo Moro”, Bari, Italy – sequence: 3 givenname: Floriana surname: Esposito fullname: Esposito, Floriana email: floriana.esposito@uniba.it organization: University of Bari “Aldo Moro”, Bari, Italy |
BookMark | eNpFkN1KAzEQhaNWsK19Ay_2BaKZTDY_V1Jq_YGiNwrehWSblbV1UzYptm_vtgrezIEzw2HONyKDNraBkCtg18CYujFKU6QIhnKBrJ8W1AkZYe8cDX1KhiABKKIwZ_8L_T4gQ4aMU6MEXpBJSp-MMSi10LwckttFcF3btB_FtKq2ncuhmG1zCrl4Dvk7dqtU-H0x323WscmHs7tQxa9NTM436ybvL8l57dYpTP50TN7u56-zR7p4eXiaTRc0gdGZSgNLLHmlAvraM2V07Y02goHjXAshZKUU9DWErKXXtZTLquSclah17ZYOx4T_5qZN178ROutjXCULzB742J6PRduXtkcc9sAHfwD5_lVT |
ContentType | Book Chapter |
Copyright | Springer International Publishing Switzerland 2015 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2015 |
DOI | 10.1007/978-3-319-24309-2_17 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 3319243098 9783319243092 |
EISSN | 1611-3349 |
Editor | Gavanelli, Marco Lamma, Evelina Riguzzi, Fabrizio |
Editor_xml | – sequence: 1 givenname: Marco surname: Gavanelli fullname: Gavanelli, Marco email: marco.gavanelli@unife.it – sequence: 2 givenname: Evelina surname: Lamma fullname: Lamma, Evelina email: evelina.lamma@unife.it – sequence: 3 givenname: Fabrizio surname: Riguzzi fullname: Riguzzi, Fabrizio email: fabrizio.riguzzi@unife.it |
EndPage | 232 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-s198t-691d352c7e3bfb0798fb989401a2284446c77109846f6b8f66dc52205388fada3 |
IEDL.DBID | SBO |
ISBN | 331924308X 9783319243085 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:14:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-s198t-691d352c7e3bfb0798fb989401a2284446c77109846f6b8f66dc52205388fada3 |
PageCount | 12 |
ParticipantIDs | springer_books_10_1007_978_3_319_24309_2_17 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | XIVth International Conference of the Italian Association for Artificial Intelligence, Ferrara, Italy, September 23-25, 2015, Proceedings |
PublicationTitle | AIIA 2015 Advances in Artificial Intelligence |
PublicationYear | 2015 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, United Kingdom – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, United Kingdom – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Madras, Indian Institute of Technology, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
SSID | ssj0001584825 ssj0002792 |
Score | 1.833305 |
Snippet | The rising interest around tractable Probabilistic Graphical Models is due to the guarantees on inference feasibility they provide. Among them, Cutset Networks... |
SourceID | springer |
SourceType | Publisher |
StartPage | 221 |
SubjectTerms | Arithmetic Circuit Bayesian Information Criterion Bayesian Network Markov Network Probabilistic Graphical Model |
Title | Learning Accurate Cutset Networks by Exploiting Decomposability |
URI | http://link.springer.com/10.1007/978-3-319-24309-2_17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MeVEP06n4mxy8SUa7pG16Ep2OITgPOtytNGkiImxg28P8631JWzfUy46FQMkj5H0v7_u-B3AZKGl8I_vUpCKkXKmACkTNNJKaxQIhAXcq18dxOJrwh2kwbUHYaGEc271pSbqbuhG7VX18q7npc9cWSPxoAzaZ8Lgtup5vn5ZvK5hVxdJzz7MmeVU3oU8RP9vZDozZyoN5onbh-fkOVvR1__3yT8fUJaJhB16bLVT8k49eWcie-vrl7rj-Hndhx8oeiNUjYKj3oKVnXeg0Qx9IfQd0YXvFwXAfrmt_1jdyo1RpbSfIoCxyXZBxxS_PiVwQR_R7twRrcqctiX1eGfsWiwOYDO9fBiNaz2SguR-LgoaxnyFmU5Fm0kgvioWR1sPd89M-ZjosLlVk6Z0Ia0wohQnDTAVWzMuEMGmWskNoz-YzfQREMa3xHOOdYhjHujL2mU7jzCBCEVJyfgxXTZASW3HkSWOxjGFKWIJhSlyYEhumk7VWn8IWIp-geks5g3bxWepzRBeFvHBH6RuMqrx7 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VMvAxFAqIbzywIVdJnA9nQlCoCrRloBXdotixEUJqJZIM5ddzThpaAUvHSJEin5y7d773ngEuPSm0rYVDdcx96krpUY6omQZCsZAjJHALlWt_4HdH7uPYG9fAr7QwBdu9GkkWmboSu5VzfKO5cdxiLBDZwRqsIxywzA_5cvu8OFvBqsoXnnuWMckrpwkORfxs7nZgzHQezOJzF56fZ29JX_ffJ_9MTItC1GnAa7WEkn_y0coz0ZJfv9wdV1_jDmwb2QMxegQM9S7U1KQJjerSBzLPAU3YWnIw3IPruT_rG7mRMje2E6SdZ6nKyKDkl6dEzEhB9Hs3BGtypwyJfVoa-2azfRh17oftLp3fyUBTO-QZ9UM7QcwmA8WEFlYQci2Mh7tlxw5WOmwuZWDonQhrtC-49v1EekbMyzjXcRKzA6hPphN1CEQypXAfY07RzMW-MrSZisNEI0LhQrjuEVxVQYpMx5FGlcUyhiliEYYpKsIUmTAdr_T2BWx0h_1e1HsYPJ3AJqIgrzxXOYV69pmrM0QamTgvttU3Zzu_WQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06QdSH6VT8Ng--Sbe2Sdv0SXRzzK8p6GBvoUkTEaET2z7MX-9NP9xQX8THQqHkNuSem3vOuQideFJoRwvX0hHzLSqlZzFAzVYgFAkZQAJaqFzvhv5gRK_H3nhOC1Ow3euWZKlpMC5NSdZ5i3Xd1e-UPX2jv3Fp0SLgTrCIlqjBB7CnHy_uZ_cskGHZzH_PNoZ5ZWfBtQBLmzkPhJgqhNiscuT5evbmtHa_ffJH97RISv0mkvVySi7KazvPRFt-fHN6_N9619GakUNgo1OAX7CBFlTSQs16GASuzoYWWp1zNtxEZ5Vv6zM-lzI3dhS4m2epyvCw5J2nWExxQQB8McRr3FOG3D4pDX-z6RYa9S-fugOrmtVgpU7IMssPnRiwnAwUEVrYQci0MN7uthO5kAGh6JSBoX0C3NG-YNr3Y-kZkS9hTEdxRLZRI5kkagdhSZSC_Q1njSYU6s3QISoKYw3IhQlB6S46rQPGTSWS8tp6GcLECYcw8SJM3IRp709vH6Plh16f314Nb_bRCoAjr7xuOUCN7D1XhwBAMnFU7LBPsyDIPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=AIIA+2015+Advances+in+Artificial+Intelligence&rft.au=Di+Mauro%2C+Nicola&rft.au=Vergari%2C+Antonio&rft.au=Esposito%2C+Floriana&rft.atitle=Learning+Accurate+Cutset+Networks+by+Exploiting+Decomposability&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319243085&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=221&rft.epage=232&rft_id=info:doi/10.1007%2F978-3-319-24309-2_17 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |