Saliency Detection Based on Spread Pattern and Manifold Ranking

In this paper, we propose a novel approach to detect visual saliency based on spread pattern and manifold ranking. We firstly construct a close-loop graph model with image superpixels as nodes. The saliency of each node is defined by its relevance to given queries according to graph-based manifold r...

Full description

Saved in:
Bibliographic Details
Published inPattern Recognition pp. 283 - 292
Main Authors Huang, Yan, Fu, Keren, Yao, Lixiu, Wu, Qiang, Yang, Jie
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2014
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel approach to detect visual saliency based on spread pattern and manifold ranking. We firstly construct a close-loop graph model with image superpixels as nodes. The saliency of each node is defined by its relevance to given queries according to graph-based manifold ranking technique. Unlike existing methods which choose a few background and foreground queries in a two-stage scheme, we propose to treat each node as a potential foreground query by assigning to it an initial ranking score based on its spread pattern property. The new concept spread pattern represents how the ranking score of one node is propagated to the whole graph. An accurate query map is generated accordingly, which is then used to produce the final saliency map with manifold ranking. Our method is computationally efficient and outperforms the state-of-the-art methods.
AbstractList In this paper, we propose a novel approach to detect visual saliency based on spread pattern and manifold ranking. We firstly construct a close-loop graph model with image superpixels as nodes. The saliency of each node is defined by its relevance to given queries according to graph-based manifold ranking technique. Unlike existing methods which choose a few background and foreground queries in a two-stage scheme, we propose to treat each node as a potential foreground query by assigning to it an initial ranking score based on its spread pattern property. The new concept spread pattern represents how the ranking score of one node is propagated to the whole graph. An accurate query map is generated accordingly, which is then used to produce the final saliency map with manifold ranking. Our method is computationally efficient and outperforms the state-of-the-art methods.
Author Huang, Yan
Yang, Jie
Yao, Lixiu
Fu, Keren
Wu, Qiang
Author_xml – sequence: 1
  givenname: Yan
  surname: Huang
  fullname: Huang, Yan
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China
– sequence: 2
  givenname: Keren
  surname: Fu
  fullname: Fu, Keren
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China
– sequence: 3
  givenname: Lixiu
  surname: Yao
  fullname: Yao, Lixiu
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China
– sequence: 4
  givenname: Qiang
  surname: Wu
  fullname: Wu, Qiang
  organization: University of Technology, Sydney, Australia
– sequence: 5
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China
BookMark eNpVkN1KAzEQhaNWsNa-gRd5gegkaf6uRFv_oKJYvQ7ZzaysLdmy2Rvf3rSK4NzM4TswwzmnZJS6hIScc7jgAObSGcsk01qwmdIzzcALd0CmBcsC9wwOyZhbrRg4aY7-eUqO_jzhTsg0508ooyxYp8bkahU2Lab6iy5wwHpou0RvQsZIi1htewyRvoRhwD7RkCJ9Cqltuk2kryGt2_RxRo6bsMk4_d0T8n53-zZ_YMvn-8f59ZJl7uzAlG0C6iAMGi1sJWUNWnNXc2ms47qxooqSx0aZGVSac1BQNErrghIYuZwQ8XM3b_vyFntfdd06ew5-15Ivkb30JbTfN-J3Lclv7RlVhg
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
DOI 10.1007/978-3-662-45646-0_29
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783662456460
366245646X
EISSN 1865-0937
Editor Liu, Chenglin
Wang, Yaonan
Li, Shutao
Editor_xml – sequence: 1
  givenname: Shutao
  surname: Li
  fullname: Li, Shutao
  email: shutao_li@yahoo.com.cn
– sequence: 2
  givenname: Chenglin
  surname: Liu
  fullname: Liu, Chenglin
  email: liucl@nlpr.ia.ac.cn
– sequence: 3
  givenname: Yaonan
  surname: Wang
  fullname: Wang, Yaonan
  email: yaonan@hnu.edu.cn
EndPage 292
GroupedDBID 0D6
0DA
38.
9-X
A0U
A3-
AABBV
AAPCR
ABBVZ
ABFTD
ABMNI
ACKEY
ACTXJ
AEJLV
AEKFX
AETDV
AEZAY
AHJUR
ALMA_UNASSIGNED_HOLDINGS
ANZUN
AZZ
BBABE
BZAQK
CZZ
I4C
IEZ
SAO
SBO
SNUHX
TPJZQ
Z7R
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z83
Z84
Z87
Z88
ID FETCH-LOGICAL-s198t-58fae6a27e7628b33c06619c1378916f82bd31df5740b611050f57e389a52ed13
ISBN 9783662456453
3662456451
ISSN 1865-0929
IngestDate Wed Nov 06 06:28:51 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s198t-58fae6a27e7628b33c06619c1378916f82bd31df5740b611050f57e389a52ed13
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_662_45646_0_29
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSubtitle 6th Chinese Conference, CCPR 2014, Changsha, China, November 17-19, 2014. Proceedings, Part I
PublicationTitle Pattern Recognition
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Du, Xiaoyong
Yang, Xiaokang
Filipe, Joaquim
Chen, Phoebe
Ślęzak, Dominik
Junqueira Barbosa, Simone Diniz
Sivalingam, Krishna M.
Kotenko, Igor
Washio, Takashi
Cuzzocrea, Alfredo
Kara, Orhun
RelatedPersons_xml – sequence: 1
  givenname: Simone Diniz
  surname: Junqueira Barbosa
  fullname: Junqueira Barbosa, Simone Diniz
  organization: Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
– sequence: 2
  givenname: Phoebe
  surname: Chen
  fullname: Chen, Phoebe
  organization: La Trobe University, Melbourne, Australia
– sequence: 3
  givenname: Alfredo
  surname: Cuzzocrea
  fullname: Cuzzocrea, Alfredo
  organization: University of Calabria, Cosenza, Italy
– sequence: 4
  givenname: Xiaoyong
  surname: Du
  fullname: Du, Xiaoyong
  organization: Renmin University of China, Beijing, China
– sequence: 5
  givenname: Joaquim
  surname: Filipe
  fullname: Filipe, Joaquim
  organization: Polytechnic Institute of Setúbal, Setúbal, Portugal
– sequence: 6
  givenname: Orhun
  surname: Kara
  fullname: Kara, Orhun
  organization: Middle East Technical University, Ankara, Turkey
– sequence: 7
  givenname: Igor
  surname: Kotenko
  fullname: Kotenko, Igor
  organization: St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, St. Petersburg, Russia
– sequence: 8
  givenname: Krishna M.
  surname: Sivalingam
  fullname: Sivalingam, Krishna M.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Dominik
  surname: Ślęzak
  fullname: Ślęzak, Dominik
  organization: University of Warsaw, Warsaw, Poland
– sequence: 10
  givenname: Takashi
  surname: Washio
  fullname: Washio, Takashi
  organization: Osaka University, Osaka, Japan
– sequence: 11
  givenname: Xiaokang
  surname: Yang
  fullname: Yang, Xiaokang
  organization: Shanghai Jiao Tong University, Shanghai, China
SSID ssj0000580895
ssj0001386076
ssib054953581
Score 1.9369787
Snippet In this paper, we propose a novel approach to detect visual saliency based on spread pattern and manifold ranking. We firstly construct a close-loop graph...
SourceID springer
SourceType Publisher
StartPage 283
SubjectTerms graph model
manifold ranking
saliency detection
spread pattern
Title Saliency Detection Based on Spread Pattern and Manifold Ranking
URI http://link.springer.com/10.1007/978-3-662-45646-0_29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25QI9AAVEeckHbiuj2IkfOfJotaoQErRF7SmyEwe1QruITRDi1zN-Zd2HkMolsqwocTyT8Xg83zcIvaa60FJyTShrNal4zYgxtSJdaT3ZR2u0Z_v8JBYn1eEpP53NfmVZS-Ng3rR_bsSV_I9UoQ_k6lCyt5Ds9FDogDbIF64gYbhecX4vh1kD6YVnxnQB-JgCtDlQX4wxCny2kf3BGGA4GfbrTK_Ctvz3-TgZZ3_bZ1Cab7k2HYG77kGaH-xgQ3Xxd7D-de6s4egHOJ7dPI0nZG4sz_vV927-RfvSDMF2OU7l9WVIyjqgDkNliZibPOEpk-HJIxO0uhKZSJHJ-T-IuzyIRDDPaVNmZlgJToo6xkJs3hcoYpK5DUVw4srNQlW9a4tCngciHEgM3iZI0bB6C23JGuzinbf7hx-_JjvEXc5tooULHPGqUBG_fBEOd0Xh6xZOA3WwofQhNBA7bT4sg2zeNIprh_Detzl-gHYc3gU7IArI4CGa2eUuup9kgqMMdtG9jLryEWzyokbgSSOw1wgMjaAROGoEBrHipBE4asRjdHKwf_x-QWIxDrKmtRoIV722QjNpYflUpixbcFZp3dJSKthi9IqZrqRdz2VVGAFOJS-gbcEf1pzZjpZP0PZytbRPEZaqq3pwJE2vnTcvtGWyVoJqYzU8Ru6heZqPxv1e6yZxa8PsNWUDs9f42Wvc7D271d3P0d2Nqr5A28PP0b4Et3Iwr6IW_AXKLGoy
link.rule.ids 782,783,787,796,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Pattern+Recognition&rft.au=Huang%2C+Yan&rft.au=Fu%2C+Keren&rft.au=Yao%2C+Lixiu&rft.au=Wu%2C+Qiang&rft.atitle=Saliency+Detection+Based+on+Spread+Pattern+and+Manifold+Ranking&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2014-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783662456453&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=283&rft.epage=292&rft_id=info:doi/10.1007%2F978-3-662-45646-0_29
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0929&client=summon