Reg R-CNN: Lesion Detection and Grading Under Noisy Labels

For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current state-of-the-art object detectors are comprised of two stages: the first stage generates region proposals, the second stage subsequently categor...

Full description

Saved in:
Bibliographic Details
Published inUncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures pp. 33 - 41
Main Authors Ramien, Gregor N., Jaeger, Paul F., Kohl, Simon A. A., Maier-Hein, Klaus H.
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current state-of-the-art object detectors are comprised of two stages: the first stage generates region proposals, the second stage subsequently categorizes them. Unlike in natural images, however, for anatomical structures of interest such as tumors, the appearance in the image (e.g., scale or intensity) links to a malignancy grade that lies on a continuous ordinal scale. While classification models discard this ordinal relation between grades by discretizing the continuous scale to an unordered bag of categories, regression models are trained with distance metrics, which preserve the relation. This advantage becomes all the more important in the setting of label confusions on ambiguous data sets, which is the usual case with medical images. To this end, we propose Reg R-CNN, which replaces the second-stage classification model of a current object detector with a regression model. We show the superiority of our approach on a public data set with 1026 patients and a series of toy experiments. Code will be available at github.com/MIC-DKFZ/RegRCNN.
AbstractList For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current state-of-the-art object detectors are comprised of two stages: the first stage generates region proposals, the second stage subsequently categorizes them. Unlike in natural images, however, for anatomical structures of interest such as tumors, the appearance in the image (e.g., scale or intensity) links to a malignancy grade that lies on a continuous ordinal scale. While classification models discard this ordinal relation between grades by discretizing the continuous scale to an unordered bag of categories, regression models are trained with distance metrics, which preserve the relation. This advantage becomes all the more important in the setting of label confusions on ambiguous data sets, which is the usual case with medical images. To this end, we propose Reg R-CNN, which replaces the second-stage classification model of a current object detector with a regression model. We show the superiority of our approach on a public data set with 1026 patients and a series of toy experiments. Code will be available at github.com/MIC-DKFZ/RegRCNN.
Author Maier-Hein, Klaus H.
Kohl, Simon A. A.
Jaeger, Paul F.
Ramien, Gregor N.
Author_xml – sequence: 1
  givenname: Gregor N.
  surname: Ramien
  fullname: Ramien, Gregor N.
  email: g.ramien@dkfz.de
– sequence: 2
  givenname: Paul F.
  surname: Jaeger
  fullname: Jaeger, Paul F.
– sequence: 3
  givenname: Simon A. A.
  surname: Kohl
  fullname: Kohl, Simon A. A.
– sequence: 4
  givenname: Klaus H.
  surname: Maier-Hein
  fullname: Maier-Hein, Klaus H.
BookMark eNpVkEFOwzAQRQ0UiVB6Aja-gGHGdmq7OxSgIEVFqujacuJJVagSFHfD7XELG1bz9UYazX_XbNIPPTF2i3CHAObeGSuUAAVCybl1Arw-Y7NMVWYnBOeswDmiUEq7i387qyasyFkKZ7S6YrOUPgBASo1y7gq2WNOWr0W1Wi14TWk39PyRDtQejin0kS_HEHf9lm_6SCNfDbv0zevQ0D7dsMsu7BPN_uaUbZ6f3qsXUb8tX6uHWiR05iBsB2gJddlKAEIT29JAhC4ShtZFKYF0pKBjY0MonZRGWXCRIHbWgGvUlOHv3fQ15k9o9M0wfCaP4I9-fG7rlc8d_UmGz37UD6H6UyM
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DOI 10.1007/978-3-030-32689-0_4
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030326890
3030326896
EISSN 1611-3349
Editor Erdt, Marius
Dalca, Adrian
Drechsler, Klaus
Tanno, Ryutaro
Baumgartner, Christian
Greenspan, Hayit
Sudre, Carole H.
Wesarg, Stefan
González Ballester, Miguel Ángel
Linguraru, Marius George
Oyarzun Laura, Cristina
Wells, William M.
Shekhar, Raj
Arbel, Tal
Editor_xml – sequence: 1
  givenname: Hayit
  surname: Greenspan
  fullname: Greenspan, Hayit
  email: hayit@eng.tau.ac.il
– sequence: 2
  givenname: Ryutaro
  surname: Tanno
  fullname: Tanno, Ryutaro
  email: ryutaro.tanno.15@ucl.ac.uk
– sequence: 3
  givenname: Marius
  orcidid: 0000-0002-1033-5205
  surname: Erdt
  fullname: Erdt, Marius
  email: marius.erdt@fraunhofer.sg
– sequence: 4
  givenname: Tal
  surname: Arbel
  fullname: Arbel, Tal
  email: tal.arbel1@mcgill.ca
– sequence: 5
  givenname: Christian
  surname: Baumgartner
  fullname: Baumgartner, Christian
  email: baumgartner@visionl.ee.etzh.ch
– sequence: 6
  givenname: Adrian
  orcidid: 0000-0002-8422-0136
  surname: Dalca
  fullname: Dalca, Adrian
  email: adalca@mit.edu
– sequence: 7
  givenname: Carole H.
  surname: Sudre
  fullname: Sudre, Carole H.
  email: carole.sudre@kcl.ac.uk
– sequence: 8
  givenname: William M.
  surname: Wells
  fullname: Wells, William M.
  email: sw@bwh.harvard.edu
– sequence: 9
  givenname: Klaus
  surname: Drechsler
  fullname: Drechsler, Klaus
  email: drechsler@fh-aachen.de
– sequence: 10
  givenname: Marius George
  orcidid: 0000-0001-6175-8665
  surname: Linguraru
  fullname: Linguraru, Marius George
  email: mlingura@childrensnational.org
– sequence: 11
  givenname: Cristina
  surname: Oyarzun Laura
  fullname: Oyarzun Laura, Cristina
  email: cristina.oyarzun.laura@igd.fraunhofer.de
– sequence: 12
  givenname: Raj
  surname: Shekhar
  fullname: Shekhar, Raj
  email: rshekhar@childrensnational.org
– sequence: 13
  givenname: Stefan
  surname: Wesarg
  fullname: Wesarg, Stefan
  email: stefan.wesarg@igd.fraunhofer.de
– sequence: 14
  givenname: Miguel Ángel
  surname: González Ballester
  fullname: González Ballester, Miguel Ángel
  email: ma.gonzalez@upf.edu
EndPage 41
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s197t-8f018e145c200e17dc570d0fde1ac9d220e4dea4db8aa592273809de0df8709b3
ISBN 9783030326883
3030326888
ISSN 0302-9743
IngestDate Thu Oct 10 04:02:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s197t-8f018e145c200e17dc570d0fde1ac9d220e4dea4db8aa592273809de0df8709b3
Notes S.A.A. Kohl—Now with the Karlsruhe Institute of Technology and DeepMind (London).
PageCount 9
ParticipantIDs springer_books_10_1007_978_3_030_32689_0_4
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
PublicationTitle Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002241269
ssj0002792
Score 2.1375613
Snippet For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current...
SourceID springer
SourceType Publisher
StartPage 33
SubjectTerms Lesion detection
Malignancy grading
Noisy labels
Title Reg R-CNN: Lesion Detection and Grading Under Noisy Labels
URI http://link.springer.com/10.1007/978-3-030-32689-0_4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6c9NZD37SlLXvoqWKNnt5VIIfUJLiJq4OTlNzESjtKDIkNkXxo_mH_VWdfsmP3koIRZm30mE-aGc3MN0PIV3y3SRoe1wy9b87SJGyYkBVncRULgeYaLYrO6P4sRpPL9PQquxoM_mxULa26alg__JNX8j-o4hriqlmyT0C23yku4HfEF7eIMG63nN_HYVY3sai26XxXc3kuG3Qhu_mtY1ba4hZdKgm-i6phr_jUzI87O6BIR87Hnh-pF4F9R9PmOARqdb-uMpzJu7lVU5baEhTDvgJHwrVFX9caBif9D2fLGxNlPsebYhEcDfGzjoKjTWYTN27z7Fau2mAy3LyJZ3AdzNi4KHTgYgo6socasgM333yhg2mGBBCY-U1BsZy3v4OprGyT6M7AAO3h1GVKimVnCtACP8zC67adQOdWqHQdrXv0ZoyWOUTPVNgpOZ4hhtof35_sEliFP9JtHBPbNtUp8STZcAdsW64dQ7NZW4L7ZfpYOQvLdI_s8RxV7bOj49Pprz7cpz0lM8vdOQm6b6NNcNlT0rQjf8rCNoZaX0LfLcs2RN464k4O37hGFy_Jc02XoZrHggJ7RQaweE1eePlSJ9835ACxpAbLA2qRpD2SFJGkDklqkKQGSWqRfEsuT44vxhPmBnewNsp5x0QTRgKiNKvxaYWIqzrjoQobBZGscxXHIaQKZKoqIWWWx5oeFuYKQtWg-cir5B3ZXywX8J5QziWuqSrNINPNIivBgTdRDKO6HkmRfiDf_MWX-lFsS9-HGyVVJiVKqjSSKlFSH5_y509kv7tfwWf0Obvqi8PzL4PlePo
link.rule.ids 782,783,787,796,27939
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Uncertainty+for+Safe+Utilization+of+Machine+Learning+in+Medical+Imaging+and+Clinical+Image-Based+Procedures&rft.au=Ramien%2C+Gregor+N.&rft.au=Jaeger%2C+Paul+F.&rft.au=Kohl%2C+Simon+A.+A.&rft.au=Maier-Hein%2C+Klaus+H.&rft.atitle=Reg+R-CNN%3A+Lesion+Detection+and+Grading+Under+Noisy+Labels&rft.series=Lecture+Notes+in+Computer+Science&rft.pub=Springer+International+Publishing&rft.isbn=9783030326883&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=33&rft.epage=41&rft_id=info:doi/10.1007%2F978-3-030-32689-0_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon