Reg R-CNN: Lesion Detection and Grading Under Noisy Labels
For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current state-of-the-art object detectors are comprised of two stages: the first stage generates region proposals, the second stage subsequently categor...
Saved in:
Published in | Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures pp. 33 - 41 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current state-of-the-art object detectors are comprised of two stages: the first stage generates region proposals, the second stage subsequently categorizes them. Unlike in natural images, however, for anatomical structures of interest such as tumors, the appearance in the image (e.g., scale or intensity) links to a malignancy grade that lies on a continuous ordinal scale. While classification models discard this ordinal relation between grades by discretizing the continuous scale to an unordered bag of categories, regression models are trained with distance metrics, which preserve the relation. This advantage becomes all the more important in the setting of label confusions on ambiguous data sets, which is the usual case with medical images. To this end, we propose Reg R-CNN, which replaces the second-stage classification model of a current object detector with a regression model. We show the superiority of our approach on a public data set with 1026 patients and a series of toy experiments. Code will be available at github.com/MIC-DKFZ/RegRCNN. |
---|---|
AbstractList | For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current state-of-the-art object detectors are comprised of two stages: the first stage generates region proposals, the second stage subsequently categorizes them. Unlike in natural images, however, for anatomical structures of interest such as tumors, the appearance in the image (e.g., scale or intensity) links to a malignancy grade that lies on a continuous ordinal scale. While classification models discard this ordinal relation between grades by discretizing the continuous scale to an unordered bag of categories, regression models are trained with distance metrics, which preserve the relation. This advantage becomes all the more important in the setting of label confusions on ambiguous data sets, which is the usual case with medical images. To this end, we propose Reg R-CNN, which replaces the second-stage classification model of a current object detector with a regression model. We show the superiority of our approach on a public data set with 1026 patients and a series of toy experiments. Code will be available at github.com/MIC-DKFZ/RegRCNN. |
Author | Maier-Hein, Klaus H. Kohl, Simon A. A. Jaeger, Paul F. Ramien, Gregor N. |
Author_xml | – sequence: 1 givenname: Gregor N. surname: Ramien fullname: Ramien, Gregor N. email: g.ramien@dkfz.de – sequence: 2 givenname: Paul F. surname: Jaeger fullname: Jaeger, Paul F. – sequence: 3 givenname: Simon A. A. surname: Kohl fullname: Kohl, Simon A. A. – sequence: 4 givenname: Klaus H. surname: Maier-Hein fullname: Maier-Hein, Klaus H. |
BookMark | eNpVkEFOwzAQRQ0UiVB6Aja-gGHGdmq7OxSgIEVFqujacuJJVagSFHfD7XELG1bz9UYazX_XbNIPPTF2i3CHAObeGSuUAAVCybl1Arw-Y7NMVWYnBOeswDmiUEq7i387qyasyFkKZ7S6YrOUPgBASo1y7gq2WNOWr0W1Wi14TWk39PyRDtQejin0kS_HEHf9lm_6SCNfDbv0zevQ0D7dsMsu7BPN_uaUbZ6f3qsXUb8tX6uHWiR05iBsB2gJddlKAEIT29JAhC4ShtZFKYF0pKBjY0MonZRGWXCRIHbWgGvUlOHv3fQ15k9o9M0wfCaP4I9-fG7rlc8d_UmGz37UD6H6UyM |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DOI | 10.1007/978-3-030-32689-0_4 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030326890 3030326896 |
EISSN | 1611-3349 |
Editor | Erdt, Marius Dalca, Adrian Drechsler, Klaus Tanno, Ryutaro Baumgartner, Christian Greenspan, Hayit Sudre, Carole H. Wesarg, Stefan González Ballester, Miguel Ángel Linguraru, Marius George Oyarzun Laura, Cristina Wells, William M. Shekhar, Raj Arbel, Tal |
Editor_xml | – sequence: 1 givenname: Hayit surname: Greenspan fullname: Greenspan, Hayit email: hayit@eng.tau.ac.il – sequence: 2 givenname: Ryutaro surname: Tanno fullname: Tanno, Ryutaro email: ryutaro.tanno.15@ucl.ac.uk – sequence: 3 givenname: Marius orcidid: 0000-0002-1033-5205 surname: Erdt fullname: Erdt, Marius email: marius.erdt@fraunhofer.sg – sequence: 4 givenname: Tal surname: Arbel fullname: Arbel, Tal email: tal.arbel1@mcgill.ca – sequence: 5 givenname: Christian surname: Baumgartner fullname: Baumgartner, Christian email: baumgartner@visionl.ee.etzh.ch – sequence: 6 givenname: Adrian orcidid: 0000-0002-8422-0136 surname: Dalca fullname: Dalca, Adrian email: adalca@mit.edu – sequence: 7 givenname: Carole H. surname: Sudre fullname: Sudre, Carole H. email: carole.sudre@kcl.ac.uk – sequence: 8 givenname: William M. surname: Wells fullname: Wells, William M. email: sw@bwh.harvard.edu – sequence: 9 givenname: Klaus surname: Drechsler fullname: Drechsler, Klaus email: drechsler@fh-aachen.de – sequence: 10 givenname: Marius George orcidid: 0000-0001-6175-8665 surname: Linguraru fullname: Linguraru, Marius George email: mlingura@childrensnational.org – sequence: 11 givenname: Cristina surname: Oyarzun Laura fullname: Oyarzun Laura, Cristina email: cristina.oyarzun.laura@igd.fraunhofer.de – sequence: 12 givenname: Raj surname: Shekhar fullname: Shekhar, Raj email: rshekhar@childrensnational.org – sequence: 13 givenname: Stefan surname: Wesarg fullname: Wesarg, Stefan email: stefan.wesarg@igd.fraunhofer.de – sequence: 14 givenname: Miguel Ángel surname: González Ballester fullname: González Ballester, Miguel Ángel email: ma.gonzalez@upf.edu |
EndPage | 41 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-s197t-8f018e145c200e17dc570d0fde1ac9d220e4dea4db8aa592273809de0df8709b3 |
ISBN | 9783030326883 3030326888 |
ISSN | 0302-9743 |
IngestDate | Thu Oct 10 04:02:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s197t-8f018e145c200e17dc570d0fde1ac9d220e4dea4db8aa592273809de0df8709b3 |
Notes | S.A.A. Kohl—Now with the Karlsruhe Institute of Technology and DeepMind (London). |
PageCount | 9 |
ParticipantIDs | springer_books_10_1007_978_3_030_32689_0_4 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings |
PublicationTitle | Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002241269 ssj0002792 |
Score | 2.1375613 |
Snippet | For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current... |
SourceID | springer |
SourceType | Publisher |
StartPage | 33 |
SubjectTerms | Lesion detection Malignancy grading Noisy labels |
Title | Reg R-CNN: Lesion Detection and Grading Under Noisy Labels |
URI | http://link.springer.com/10.1007/978-3-030-32689-0_4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6c9NZD37SlLXvoqWKNnt5VIIfUJLiJq4OTlNzESjtKDIkNkXxo_mH_VWdfsmP3koIRZm30mE-aGc3MN0PIV3y3SRoe1wy9b87SJGyYkBVncRULgeYaLYrO6P4sRpPL9PQquxoM_mxULa26alg__JNX8j-o4hriqlmyT0C23yku4HfEF7eIMG63nN_HYVY3sai26XxXc3kuG3Qhu_mtY1ba4hZdKgm-i6phr_jUzI87O6BIR87Hnh-pF4F9R9PmOARqdb-uMpzJu7lVU5baEhTDvgJHwrVFX9caBif9D2fLGxNlPsebYhEcDfGzjoKjTWYTN27z7Fau2mAy3LyJZ3AdzNi4KHTgYgo6socasgM333yhg2mGBBCY-U1BsZy3v4OprGyT6M7AAO3h1GVKimVnCtACP8zC67adQOdWqHQdrXv0ZoyWOUTPVNgpOZ4hhtof35_sEliFP9JtHBPbNtUp8STZcAdsW64dQ7NZW4L7ZfpYOQvLdI_s8RxV7bOj49Pprz7cpz0lM8vdOQm6b6NNcNlT0rQjf8rCNoZaX0LfLcs2RN464k4O37hGFy_Jc02XoZrHggJ7RQaweE1eePlSJ9835ACxpAbLA2qRpD2SFJGkDklqkKQGSWqRfEsuT44vxhPmBnewNsp5x0QTRgKiNKvxaYWIqzrjoQobBZGscxXHIaQKZKoqIWWWx5oeFuYKQtWg-cir5B3ZXywX8J5QziWuqSrNINPNIivBgTdRDKO6HkmRfiDf_MWX-lFsS9-HGyVVJiVKqjSSKlFSH5_y509kv7tfwWf0Obvqi8PzL4PlePo |
link.rule.ids | 782,783,787,796,27939 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Uncertainty+for+Safe+Utilization+of+Machine+Learning+in+Medical+Imaging+and+Clinical+Image-Based+Procedures&rft.au=Ramien%2C+Gregor+N.&rft.au=Jaeger%2C+Paul+F.&rft.au=Kohl%2C+Simon+A.+A.&rft.au=Maier-Hein%2C+Klaus+H.&rft.atitle=Reg+R-CNN%3A+Lesion+Detection+and+Grading+Under+Noisy+Labels&rft.series=Lecture+Notes+in+Computer+Science&rft.pub=Springer+International+Publishing&rft.isbn=9783030326883&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=33&rft.epage=41&rft_id=info:doi/10.1007%2F978-3-030-32689-0_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |